Model Evaluation of New Techniques for Maintaining High-NO Conditions in Oxidation Flow Reactors for the Study of OH-Initiated Atmospheric Chemistry

被引:31
作者
Peng, Zhe [1 ,2 ]
Palm, Brett B. [1 ,2 ]
Day, Douglas A. [1 ,2 ]
Talukdar, Ranajit K. [1 ,2 ]
Hu, Weiwei [1 ,2 ]
Lambe, Andrew T. [3 ,4 ]
Brune, William H. [5 ]
Jimenez, Jose L. [1 ,2 ]
机构
[1] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[3] Boston Coll, Chem Dept, Chestnut Hill, MA 02467 USA
[4] Aerodyne Res Inc, Billerica, MA 01821 USA
[5] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA
来源
ACS EARTH AND SPACE CHEMISTRY | 2018年 / 2卷 / 02期
关键词
oxidation flow reactor; high-NO chemistry; kinetic modeling; nontropospheric organic photolysis; VOC oxidation by NO3; experimental design; ORGANIC AEROSOL FORMATION; HETEROGENEOUS OXIDATION; CHEMICAL MECHANISMS; REACTIVITY MEASUREMENTS; ENVIRONMENTAL CHAMBERS; AROMATIC-HYDROCARBONS; SIMULATION CHAMBER; RADICAL CHEMISTRY; VEHICLE EMISSIONS; FOREST AIR;
D O I
10.1021/acs.earth.spacechem.7b00070
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxidation flow reactors (OFRs) efficiently produce OH radicals using low-pressure Hg-lamp emissions at lambda = 254 nm (OFR254) or both lambda = 185 and 254 nm (OFR185). OFRs under most conditions are limited to studying low-NO chemistry (where RO2 + HO2 dominates RO2 fate), even though substantial amounts of initial NO may be injected. This is due to very fast NO oxidation by high concentrations of OH, HO2, and O-3. In this study, we model new techniques for maintaining high-NO conditions in OFRs, that is, continuous NO addition along the length of the reactor in OFR185 (OFRI8S-cNO), recently proposed injection of N2O at the entrance of the reactor in OFR254 (OFR254-iN(2)O), and an extension of that idea to OFR185 (OFR185-iN(2)O). For these techniques, we evaluate (1) fraction of conditions dominated by RO2 + NO while avoiding significant nontropospheric photolysis and (2) fraction of conditions where reactions of precursors with OH dominate over unwanted reactions with NO3. OFR18S-iN(2)O is the most practical for general high-NO experiments because it represents the best compromise between experimental complexity and performance upon proper usage. Short lamp distances are recommended for OFR185-iN(2)O to ensure a relatively uniform radiation field. OFR185-iN(2)O with low O-2 or using Hg lamps with higher 185 nm-to-254 nm ratio can improve performance. OFR18S-iN(2)O experiments should generally be conducted at higher relative humidity, higher UV, lower concentration of non-NOy external OH reactants, and percent-level N2O. OFR18S-cNO and OFR185-iN(2)O at optimal NO precursor injection rate (similar to 2 ppb/s) or concentration (similar to 3%) would have satisfactory performance in typical field studies where ambient air is oxidized. Exposure estimation equations are provided to aid experimental planning. This work enables improved high-NO OFR experimental design and interpretation.
引用
收藏
页码:72 / 86
页数:15
相关论文
共 51 条
  • [1] Chemical Mechanisms of Aging of Aerosol Formed from the Reaction of n-Pentadecane with OH Radicals in the Presence of NOx
    Aimanant, Sukon
    Ziemann, Paul J.
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2013, 47 (09) : 979 - 990
  • [2] Burkholder J. B., CHEM KINETICS PHOTOC, V18, P15
  • [3] A review of Secondary Organic Aerosol (SOA) formation from isoprene
    Carlton, A. G.
    Wiedinmyer, C.
    Kroll, J. H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) : 4987 - 5005
  • [4] A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation
    Carter, WPL
    Cocker, DR
    Fitz, DR
    Malkina, IL
    Bumiller, K
    Sauer, CG
    Pisano, JT
    Bufalino, C
    Song, C
    [J]. ATMOSPHERIC ENVIRONMENT, 2005, 39 (40) : 7768 - 7788
  • [5] Quantifying the reactive uptake of OH by organic aerosols in a continuous flow stirred tank reactor
    Che, Dung L.
    Smith, Jared D.
    Leone, Stephen R.
    Ahmed, Musahid
    Wilson, Kevin R.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (36) : 7885 - 7895
  • [6] State-of-the-art chamber facility for studying atmospheric aerosol chemistry
    Cocker, DR
    Flagan, RC
    Seinfeld, JH
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (12) : 2594 - 2601
  • [7] Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR
    Fuchs, Hendrik
    Novelli, Anna
    Rolletter, Michael
    Hofzumahaus, Andreas
    Pfannerstill, Eva Y.
    Kessel, Stephan
    Edtbauer, Achim
    Williams, Jonathan
    Michoud, Vincent
    Dusanter, Sebastien
    Locoge, Nadine
    Zannoni, Nora
    Gros, Valerie
    Truong, Francois
    Sarda-Esteve, Roland
    Cryer, Danny R.
    Brumby, Charlotte A.
    Whalley, Lisa K.
    Stone, Daniel
    Seakins, Paul W.
    Heard, Dwayne E.
    Schoemaecker, Coralie
    Blocquet, Marion
    Coudert, Sebastien
    Batut, Sebastien
    Fittschen, Christa
    Thames, Alexander B.
    Brune, William H.
    Ernest, Cheryl
    Harder, Hartwig
    Muller, Jennifer B. A.
    Elste, Thomas
    Kubistin, Dagmar
    Andres, Stefanie
    Bohn, Birger
    Hohaus, Thorsten
    Holland, Frank
    Li, Xin
    Rohrer, Franz
    Kiendler-Scharr, Astrid
    Tillmann, Ralf
    Wegener, Robert
    Yu, Zhujun
    Zou, Qi
    Wahner, Andreas
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (10) : 4023 - 4053
  • [8] Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change
    George, I. J.
    Vlasenko, A.
    Slowik, J. G.
    Broekhuizen, K.
    Abbatt, J. P. D.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (16) : 4187 - 4201
  • [9] The formation, properties and impact of secondary organic aerosol: current and emerging issues
    Hallquist, M.
    Wenger, J. C.
    Baltensperger, U.
    Rudich, Y.
    Simpson, D.
    Claeys, M.
    Dommen, J.
    Donahue, N. M.
    George, C.
    Goldstein, A. H.
    Hamilton, J. F.
    Herrmann, H.
    Hoffmann, T.
    Iinuma, Y.
    Jang, M.
    Jenkin, M. E.
    Jimenez, J. L.
    Kiendler-Scharr, A.
    Maenhaut, W.
    McFiggans, G.
    Mentel, Th. F.
    Monod, A.
    Prevot, A. S. H.
    Seinfeld, J. H.
    Surratt, J. D.
    Szmigielski, R.
    Wildt, J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (14) : 5155 - 5236
  • [10] Formation of organic aerosols from the oxidation of biogenic hydrocarbons
    Hoffmann, T
    Odum, JR
    Bowman, F
    Collins, D
    Klockow, D
    Flagan, RC
    Seinfeld, JH
    [J]. JOURNAL OF ATMOSPHERIC CHEMISTRY, 1997, 26 (02) : 189 - 222