Improving Multi-View Stereo via Super-Resolution

被引:1
作者
Lomurno, Eugenio [1 ]
Romanoni, Andrea [1 ]
Matteucci, Matteo [1 ]
机构
[1] Politecn Milan, Milan, Italy
来源
IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II | 2022年 / 13232卷
关键词
Multi-View Stereo; Super-Resolution; Single-Image Super-Resolution; 3D reconstruction;
D O I
10.1007/978-3-031-06430-2_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Today, Multi-View Stereo techniques can reconstruct robust and detailed 3D models, especially when starting from high-resolution images. However, there are cases in which the resolution of input images is relatively low, for instance, when dealing with old photos or when hardware constrains the amount of data acquired. This paper shows how increasing the resolution of such input images through Super-Resolution techniques reflects in quality improvements of the reconstructed 3D models. We show that applying a Super-Resolution step before recovering the depth maps leads to a better 3D model both in the case of patchmatch and deep learning Multi-View Stereo algorithms. In detail, the use of Super-Resolution improves the average fl score of reconstructed models. It turns out to be particularly effective in the case of scenes rich in texture, such as outdoor landscapes.
引用
收藏
页码:102 / 113
页数:12
相关论文
共 27 条
  • [1] PatchMatch Stereo - Stereo Matching with Slanted Support Windows
    Bleyer, Michael
    Rhemann, Christoph
    Rother, Carsten
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
  • [2] Point-Based Multi-View Stereo Network
    Chen, Rui
    Han, Songfang
    Xu, Jing
    Su, Hao
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1538 - 1547
  • [3] Learning Continuous Image Representation with Local Implicit Image Function
    Chen, Yinbo
    Liu, Sifei
    Wang, Xiaolong
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8624 - 8634
  • [4] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [5] A Super-Resolution Framework for High-Accuracy Multiview Reconstruction
    Goldluecke, Bastian
    Aubry, Mathieu
    Kolev, Kalin
    Cremers, Daniel
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 106 (02) : 172 - 191
  • [6] Gu XD, 2020, Arxiv, DOI [arXiv:1912.06378, 10.48550/ARXIV.1912.06378, DOI 10.48550/ARXIV.1912.06378]
  • [7] Deep Back-Projection Networks For Super-Resolution
    Haris, Muhammad
    Shakhnarovich, Greg
    Ukita, Norimichi
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1664 - 1673
  • [8] DeepMVS: Learning Multi-view Stereopsis
    Huang, Po-Han
    Matzen, Kevin
    Kopf, Johannes
    Ahuja, Narendra
    Huang, Jia-Bin
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2821 - 2830
  • [9] Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.181, 10.1109/CVPR.2016.182]
  • [10] Tanks and Temples: Benchmarking Large-Scale Scene Reconstruction
    Knapitsch, Arno
    Park, Jaesik
    Zhou, Qian-Yi
    Koltun, Vladlen
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (04):