X-ray spectroscopic and stroboscopic analysis of pulsed-laser ablation of Zn and its oxidation

被引:19
作者
Reich, Stefan [1 ]
Goettlicher, Joerg [1 ]
Letzel, Alexander [2 ,3 ]
Goekce, Bilal [2 ,3 ]
Barcikowski, Stephan [2 ,3 ]
Rolo, Tomy dos Santos [1 ]
Baumbach, Tilo [1 ,4 ]
Plech, Anton [1 ]
机构
[1] KIT Karlsruhe, Inst Photon Sci & Synchrotron Radiat, Postfach 3640, D-76201 Karlsruhe, Germany
[2] Univ Duisburg Essen, Tech Chem 1, Univ Str 7, D-45141 Essen, Germany
[3] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany
[4] KIT Karlsruhe, Lab Applicat Synchrotron Radiat, Engesser Str 15, D-76131 Karlsruhe, Germany
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2018年 / 124卷 / 01期
关键词
CAVITATION BUBBLE; NANOPARTICLE PRODUCTIVITY; ABSORPTION SPECTROSCOPY; IN-SITU; LIQUID; DYNAMICS; COLLOIDS; TARGET; WIRE; SURFACTANT;
D O I
10.1007/s00339-017-1503-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Pulsed laser ablation in liquids (PLAL) as an attractive process for ligand-free nanoparticle synthesis represents a multiscale problem to understand the mechanisms and achieve control. Atomic and nanoscale processes interacting with macroscale dynamics in the liquid demand for sensitive tools for in-situ and structural analysis. By adding X-ray methods, we enlarge the available information on millimeter-scale bubble formation down to atomic-scale nanoparticle reactions. X-ray spectroscopy (XAS) can resolve the chemical speciation of the ablated material during the ablation from a zinc wire target showing a first oxidation step from zinc to zinc oxide within some 10 min followed by a slower reaction to hydrozincite. X-ray imaging investigations also give additional information on the bubble dynamics as we demonstrate by comparing the microsecond radiography and optical stroboscopy. We show different features of the detachment of the ablation bubble from a free wire. The location of the first collapse occurs in front of the target. While a first rebound bubble possesses an homogeneous interior, the subsequent rebound consists merely of a cloud of microbubbles.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow [J].
Barcikowski, Stephan ;
Menendez-Manjon, Ana ;
Chichkov, Boris ;
Brikas, Marijus ;
Raciukaitis, Gediminas .
APPLIED PHYSICS LETTERS, 2007, 91 (08)
[2]   The final stage of the collapse of a cavitation bubble close to a rigid boundary [J].
Brujan, EA ;
Keen, GS ;
Vogel, A ;
Blake, JR .
PHYSICS OF FLUIDS, 2002, 14 (01) :85-92
[3]   Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution [J].
Camarda, P. ;
Messina, F. ;
Vaccaro, L. ;
Buscarino, G. ;
Agnello, S. ;
Gelardi, F. M. ;
Cannas, M. .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (12)
[4]   Oxidation of Zn nanoparticles probed by online optical spectroscopy during nanosecond pulsed laser ablation of a Zn plate in H2O [J].
Camarda, P. ;
Vaccaro, L. ;
Messina, F. ;
Cannas, M. .
APPLIED PHYSICS LETTERS, 2015, 107 (01)
[5]  
Cho JM, 2009, B KOREAN CHEM SOC, V30, P1616
[6]  
Compagnini G., 2002, PHYS CHEM CHEM PHYS, V4
[7]   Structural characterization of zinc(II) chloride in aqueous solution and in the protic ionic liquid ethyl ammonium nitrate by x-ray absorption spectroscopy [J].
D'Angelo, Paola ;
Zitolo, Andrea ;
Ceccacci, Francesca ;
Caminiti, Ruggero ;
Aquilanti, Giuliana .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (15)
[8]  
De Giacomo A, 2013, PHYS CHEM CHEM PHYS, V15, P3083, DOI [10.1039/c2cp42649, 10.1039/c2cp42649h]
[9]   In Situ Investigations of Laser-Generated Ligand-Free Platinum Nanoparticles by X-ray Absorption Spectroscopy: How Does the Immediate Environment Influence the Particle Surface? [J].
Fischer, Mathias ;
Hormes, Josef ;
Marzun, Galina ;
Wagener, Philipp ;
Hagemann, Ulrich ;
Barcikowski, Stephan .
LANGMUIR, 2016, 32 (35) :8793-8802
[10]   FORMATION OF NANOMETER-SIZE SILICON PARTICLES IN A LASER-INDUCED PLASMA IN SIH4 [J].
FOJTIK, A ;
GIERSIG, M ;
HENGLEIN, A .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1993, 97 (11) :1493-1496