Impact of Low-Resolution ADC on DOA Estimation Performance for Massive MIMO Receive Array

被引:19
作者
Shi, Baihua [1 ]
Chen, Nuo [1 ]
Zhu, Xicheng [1 ]
Qian, Yuwen [1 ]
Zhang, Yijin [1 ]
Shu, Feng [1 ,2 ]
Wang, Jiangzhou [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
[2] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Hainan, Peoples R China
[3] Univ Kent, Sch Engn & Digital Arts, Canterbury CT2 7NT, Kent, England
来源
IEEE SYSTEMS JOURNAL | 2022年 / 16卷 / 02期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Signal to noise ratio; Estimation; Direction-of-arrival estimation; Massive MIMO; Quantization (signal); Antenna arrays; Wireless communication; Additive quantization noise model (AQNM); Cramer--Rao lower bound (CRLB); direction of arrival (DOA); low -resolution analog-to-digital convertors (ADCs); CHANNEL ESTIMATION; LOW-COMPLEXITY; LOCALIZATION; SYSTEMS;
D O I
10.1109/JSYST.2021.3139449
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we present a new scenario of direction of arrival estimation using massive multiple-input multiple-output receive array with low-resolution analog-to-digital convertors (ADCs), which can strike a good balance between performance and circuit cost. Based on the linear additive quantization noise model, the inpact of low-resolution ADCs on methods, such as Root-MUSIC, is analyzed. Also, the closed-form expression of Cramer-Rao lower bound (CRLB) is derived to evaluate the performance loss caused by the low-resolution ADCs. The simulation results show that the Root-MUSIC methods can achieve the corresponding CRLB. Furthermore, adopting ADCs with 2-3 b is an efficient choice for most applications if 1 dB performance loss is acceptable.
引用
收藏
页码:2635 / 2638
页数:4
相关论文
共 14 条
[1]   LoRay: AoA Estimation System for Long Range Communication Networks [J].
BniLam, Noori ;
Joosens, Dennis ;
Aernouts, Michiel ;
Steckel, Jan ;
Weyn, Maarten .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (03) :2005-2018
[2]   Performance Analysis of Multiuser Massive MIMO With Spatially Correlated Channels Using Low-Precision ADC [J].
Dong, Peihao ;
Zhang, Hua ;
Xu, Wei ;
Li, Geoffrey Ye ;
You, Xiaohu .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (01) :205-208
[3]   Joint Energy Detection and Massive Array Design for Localization and Mapping [J].
Guidi, Francesco ;
Guerra, Anna ;
Dardari, Davide ;
Clemente, Antonio ;
D'Errico, Raffaele .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (03) :1359-1371
[4]   Low-Complexity Deep-Learning-Based DOA Estimation for Hybrid Massive MIMO Systems With Uniform Circular Arrays [J].
Hu, Die ;
Zhang, Yonghao ;
He, Lianghua ;
Wu, Jun .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (01) :83-86
[5]   One-Bit MUSIC [J].
Huang, Xiaodong ;
Liao, Bin .
IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (07) :961-965
[6]   A Generalized Sparse Bayesian Learning Algorithm for 1-bit DOA Estimation [J].
Meng, Xiangming ;
Zhu, Jiang .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (07) :1414-1417
[7]   Radio Source Localization in Multipath Channels Using EM Lens Assisted Massive Antennas Arrays [J].
Shaikh, Sarmad A. ;
Tonello, Andrea M. .
IEEE ACCESS, 2019, 7 :9001-9012
[8]  
Shi, ARXIV210402447, V2021
[9]   Low-Complexity and High-Resolution DOA Estimation for Hybrid Analog and Digital Massive MIMO Receive Array [J].
Shu, Feng ;
Qin, Yaolu ;
Liu, Tingting ;
Gui, Linqing ;
Zhang, Yijin ;
Li, Jun ;
Han, Zhu .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (06) :2487-2501
[10]  
Tuncer TE, 2009, CLASSICAL AND MODERN DIRECTION-OF-ARRIVAL ESTIMATION, P1