Making Sense of the Epigenome Using Data Integration Approaches

被引:51
作者
Cazaly, Emma [1 ]
Saad, Joseph [1 ]
Wang, Wenyu [1 ]
Heckman, Caroline [1 ]
Ollikainen, Miina [1 ,2 ]
Tang, Jing [1 ,3 ,4 ]
机构
[1] Univ Helsinki, Helsinki Inst Life Sci, Inst Mol Med Finland, Helsinki, Finland
[2] Univ Helsinki, Dept Publ Hlth, Helsinki, Finland
[3] Univ Turku, Dept Math & Stat, Turku, Finland
[4] Univ Helsinki, Fac Med, Res Program Syst Oncol, Helsinki, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
epigenetics; data integration; functional annotation; drug discovery; data resources; profiling techniques; BODY-MASS INDEX; DNA METHYLATION; MENDELIAN RANDOMIZATION; COLORECTAL-CANCER; GENE-EXPRESSION; FUNCTIONAL INTERPRETATION; EPIGENETIC CHANGES; WIDE ASSOCIATION; MESSENGER-RNA; CAUSAL ROLE;
D O I
10.3389/fphar.2019.00126
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Epigenetic research involves examining the mitotically heritable processes that regulate gene expression, independent of changes in the DNA sequence. Recent technical advances such as whole-genome bisulfite sequencing and affordable epigenomic array-based technologies, allow researchers to measure epigenetic profiles of large cohorts at a genome-wide level, generating comprehensive high-dimensional datasets that may contain important information for disease development and treatment opportunities. The epigenomic profile for a certain disease is often a result of the complex interplay between multiple genetic and environmental factors, which poses an enormous challenge to visualize and interpret these data. Furthermore, due to the dynamic nature of the epigenome, it is critical to determine causal relationships from the many correlated associations. In this review we provide an overview of recent data analysis approaches to integrate various omics layers to understand epigenetic mechanisms of complex diseases, such as obesity and cancer. We discuss the following topics: (i) advantages and limitations of major epigenetic profiling techniques, (ii) resources for standardization, annotation and harmonization of epigenetic data, and (iii) statistical methods and machine learning methods for establishing data-driven hypotheses of key regulatory mechanisms. Finally, we discuss the future directions for data integration that shall facilitate the discovery of epigenetic-based biomarkers and therapies.
引用
收藏
页数:15
相关论文
共 146 条
[91]   BLUEPRINT: mapping human blood cell epigenomes [J].
Martens, Joost H. A. ;
Stunnenberg, Hendrik G. .
HAEMATOLOGICA, 2013, 98 (10) :1487-1489
[92]   Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer [J].
Martens, JWM ;
Nimmrich, I ;
Koenig, T ;
Look, MP ;
Harbeck, N ;
Model, F ;
Kluth, A ;
Bolt-De Vries, J ;
Sieuwerts, AM ;
Portengen, H ;
Gelder, MEM ;
Piepenbrock, C ;
Olek, A ;
Höfler, H ;
Kiechle, M ;
Klijn, JGM ;
Schmitt, M ;
Maier, S ;
Foekens, JA .
CANCER RESEARCH, 2005, 65 (10) :4101-4107
[93]   coMET: visualisation of regional epigenome-wide association scan results and DNA co-methylation patterns [J].
Martin, Tiphaine C. ;
Yet, Idil ;
Tsai, Pei-Chien ;
Bell, Jordana T. .
BMC BIOINFORMATICS, 2015, 16
[94]   GREAT improves functional interpretation of cis-regulatory regions [J].
McLean, Cory Y. ;
Bristor, Dave ;
Hiller, Michael ;
Clarke, Shoa L. ;
Schaar, Bruce T. ;
Lowe, Craig B. ;
Wenger, Aaron M. ;
Bejerano, Gill .
NATURE BIOTECHNOLOGY, 2010, 28 (05) :495-U155
[95]   Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach [J].
Mendelson, Michael M. ;
Marioni, Riccardo E. ;
Joehanes, Roby ;
Liu, Chunyu ;
Hedman, Asa K. ;
Aslibekyan, Stella ;
Demerath, Ellen W. ;
Guan, Weihua ;
Zhi, Degui ;
Yao, Chen ;
Huan, Tianxiao ;
Willinger, Christine ;
Chen, Brian ;
Courchesne, Paul ;
Multhaup, Michael ;
Lrvin, Marguerite R. ;
Cohain, Ariella ;
Schadt, Eric E. ;
Grove, Megan L. ;
Bressler, Jan ;
North, Kari ;
Sundstrom, Johan ;
Gustafsson, Stefan ;
Shah, Sonia ;
McRae, Allan F. ;
Harris, Sarah E. ;
Gibson, Jude ;
Redmond, Paul ;
Coriey, Janie ;
Murphy, Lee ;
Starr, John M. ;
Kleinbrink, Erica ;
Lipovich, Leonard ;
Visscher, Peter M. ;
Wray, Naomi R. ;
Krauss, Ronald M. ;
Fallin, Daniele ;
Feinberg, Andrew ;
Absher, Devin M. ;
Fornage, Myriam ;
Pankow, James S. ;
Lind, Lars ;
Fox, Caroline ;
Ingelsson, Erik ;
Arnett, Donna K. ;
Boerwinkle, Eric ;
Liang, Liming ;
Levy, Daniel ;
Deary, Lan J. .
PLOS MEDICINE, 2017, 14 (01)
[96]   Large-scale gene function analysis with the PANTHER classification system [J].
Mi, Huaiyu ;
Muruganujan, Anushya ;
Casagrande, John T. ;
Thomas, Paul D. .
NATURE PROTOCOLS, 2013, 8 (08) :1551-1566
[97]   Disentangling molecular relationships with a causal inference test [J].
Millstein, Joshua ;
Zhang, Bin ;
Zhu, Jun ;
Schadt, Eric E. .
BMC GENETICS, 2009, 10
[98]  
Nagasaka T, 2003, CLIN CANCER RES, V9, P5306
[99]   5-Hydroxymethylcytosine Remodeling Precedes Lineage Specification during Differentiation of Human CD4+ T Cells [J].
Nestor, Colm E. ;
Lentini, Antonio ;
Nilsson, Cathrine Hagg ;
Gawel, Danuta R. ;
Gustafsson, Mika ;
Mattson, Lina ;
Wang, Hui ;
Rundquist, Olof ;
Meehan, Richard R. ;
Klocke, Bernward ;
Seifert, Martin ;
Hauck, Stefanie M. ;
Laumen, Helmut ;
Zhang, Huan ;
Benson, Mikael .
CELL REPORTS, 2016, 16 (02) :559-570
[100]   Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat [J].
Ollikainen, Miina ;
Ismail, Khadeeja ;
Gervin, Kristina ;
Kyllonen, Anjuska ;
Hakkarainen, Antti ;
Lundbom, Jesper ;
Jarvinen, Elina A. ;
Harris, Jennifer R. ;
Lundbom, Nina ;
Rissanen, Aila ;
Lyle, Robert ;
Pietilainen, Kirsi H. ;
Kaprio, Jaakko .
CLINICAL EPIGENETICS, 2015, 7