共 48 条
Archaic chaperone-usher pili self-secrete into superelastic zigzag springs
被引:19
作者:
Pakharukova, Natalia
[1
]
Malmi, Henri
[1
]
Tuittila, Minna
[1
]
Dahlberg, Tobias
[2
]
Ghosal, Debnath
[3
,7
]
Chang, Yi-Wei
[3
,8
]
Myint, Si Lhyam
[4
]
Paavilainen, Sari
[1
]
Knight, Stefan David
[5
]
Lamminmaki, Urpo
[6
]
Uhlin, Bernt Eric
[4
]
Andersson, Magnus
[2
]
Jensen, Grant
[3
]
Zavialov, Anton, V
[1
]
机构:
[1] Univ Turku, Fac Med, Joint Biotechnol Lab, MediCity, Turku, Finland
[2] Umea Univ, Umea Ctr Microbial Res UCMR, Dept Phys, Umea, Sweden
[3] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[4] Umea Univ, Umea Ctr Microbial Res UCMR, Dept Mol Biol, Lab Mol Infect Med Sweden MIMS, Umea, Sweden
[5] Uppsala Univ, Biomed Ctr, Dept Cell & Mol Biol, Uppsala, Sweden
[6] Univ Turku, Dept Life Technol, Turku, Finland
[7] Univ Melbourne, Div Med Dent & Hearth Sci, Parkville, Vic, Australia
[8] Univ Penn, Dept Biochem & Biophys, Perelman Sch Med, Philadelphia, PA 19104 USA
来源:
基金:
芬兰科学院;
瑞典研究理事会;
美国国家卫生研究院;
关键词:
COLI P-PILI;
ACINETOBACTER-BAUMANNII;
STRUCTURAL BASIS;
HELICAL RECONSTRUCTION;
PHYSICAL-PROPERTIES;
COMPLEX;
BIOGENESIS;
ATTACHMENT;
TWEEZERS;
FIMBRIAE;
D O I:
10.1038/s41586-022-05095-0
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria(1-3). Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens(1,4,5). However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.
引用
收藏
页码:335 / +
页数:23
相关论文