Ground state solutions for a fractional Schrodinger equation with critical growth

被引:22
作者
Ambrosio, Vincenzo [1 ]
Figueiredo, Giovany M. [2 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro Urbino, Italy
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Fractional Laplacian; monotonicity trick; critical exponent; compactness lemma; SCALAR FIELD-EQUATIONS; EXISTENCE; LAPLACIAN; SYMMETRY;
D O I
10.3233/ASY-171438
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the existence of nontrivial ground state solutions for the following fractional scalar field equation (-Delta)(s)u + V(x)u = f(u) in R-N, where s is an element of (0, 1), N > 2s, (-Delta) s is the fractional Laplacian, V : R-N -> R is a bounded potential satisfying suitable assumptions, and f is an element of C-1,C-beta (R, R) has critical growth. We first analyze the case V constant, and then we develop a Jeanjean-Tanaka argument [Indiana Univ. Math. J. 54 ( 2005), 443-464] to deal with the non autonomous case. As far as we know, all results presented here are new.
引用
收藏
页码:159 / 191
页数:33
相关论文
共 48 条
[1]  
Alves C. O., ARXIV161004649
[2]   Concentration Phenomena for Fractional Elliptic Equations Involving Exponential Critical Growth [J].
Alves, Claudianor O. ;
do O, Joao Marcos ;
Miyagaki, Olimpio H. .
ADVANCED NONLINEAR STUDIES, 2016, 16 (04) :843-861
[3]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[4]  
Ambrosio V., 2016, ELECT J DIFFERENTIAL, V2016, P151
[5]  
AMBROSIO V, ADV DIFFERENTIAL EQU
[6]   Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method [J].
Ambrosio, Vincenzo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2043-2062
[7]  
Ambrosio V, 2017, DIFFER INTEGRAL EQU, V30, P115
[8]  
[Anonymous], 2006, PROGR MATH
[9]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[10]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162