First-principles study of enhanced magnetic anisotropies in transition-metal atoms doped WS2 monolayer

被引:8
作者
Song, Yu-Xi [1 ]
Tong, Wen-Yi [1 ]
Shen, Yu-Hao [1 ]
Gong, Shi-Jing [1 ]
Tang, Zheng [1 ]
Duan, Chun-Gang [1 ,2 ]
机构
[1] East China Normal Univ, Minist Educ, Dept Elect Engn, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
magnetic anisotropy; atomic-scale nanostructures; 2D materials; AUGMENTED-WAVE METHOD; MAGNETOCRYSTALLINE ANISOTROPY; PERPENDICULAR-ANISOTROPY; SURFACE; APPROXIMATION; JUNCTION; MOMENT; LIMIT; MOS2;
D O I
10.1088/1361-648X/aa8c87
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Considerable progress in contemporary spintronics has been made in recent years for developing nanoscale data memory and quantum information processing. It is, however, still a great challenge to achieve the ultimate limit of storage bit. 2D materials, fortunately, provide an alternative solution for designing materials with the expected miniaturizing scale, chemical stability as well as giant magnetic anisotropy energy. By performing first-principles calculations, we have examined two possible doping sites on a WS2 monolayer using three kinds of transition metal (TM) atoms (Mn, Fe and Co). It is found that the TM atoms prefer to stay on the W atom site. Additionally, differently from the case of Mn, doping Co and Fe atoms on the W vacancy can achieve perpendicular magnetic anisotropy with a much larger magnitude, which provides a bright prospect for generating atomic-scale magnets of storage devices.
引用
收藏
页数:6
相关论文
共 50 条
[11]   First-principles studies of multiferroic and magnetoelectric materials [J].
Fang, Yue-Wen ;
Ding, Hang-Chen ;
Tong, Wen-Yi ;
Zhu, Wan-Jiao ;
Shen, Xin ;
Gong, Shi-Jing ;
Wan, Xian-Gang ;
Duan, Chun-Gang .
SCIENCE BULLETIN, 2015, 60 (02) :156-181
[12]   Giant magnetic anisotropy of single cobalt atoms and nanoparticles [J].
Gambardella, P ;
Rusponi, S ;
Veronese, M ;
Dhesi, SS ;
Grazioli, C ;
Dallmeyer, A ;
Cabria, I ;
Zeller, R ;
Dederichs, PH ;
Kern, K ;
Carbone, C ;
Brune, H .
SCIENCE, 2003, 300 (5622) :1130-1133
[13]   Manipulation of magnetic anisotropy of Fe/graphene by charge injection [J].
Gong, S. J. ;
Duan, Chun-Gang ;
Zhu, Zi-Qiang ;
Chu, Jun-Hao .
APPLIED PHYSICS LETTERS, 2012, 100 (12)
[14]  
Gong YJ, 2014, NAT MATER, V13, P1135, DOI [10.1038/NMAT4091, 10.1038/nmat4091]
[15]   Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network [J].
Hirjibehedin, Cyrus F. ;
Lin, Chiung-Yuan ;
Otte, Alexander F. ;
Ternes, Markus ;
Lutz, Christopher P. ;
Jones, Barbara A. ;
Heinrich, Andreas J. .
SCIENCE, 2007, 317 (5842) :1199-1203
[16]   Giant Magnetic Anisotropy of Transition-Metal Dimers on Defected Graphene [J].
Hu, Jun ;
Wu, Ruqian .
NANO LETTERS, 2014, 14 (04) :1853-1858
[17]   Control of the Magnetism and Magnetic Anisotropy of a Single-Molecule Magnet with an Electric Field [J].
Hu, Jun ;
Wu, Ruqian .
PHYSICAL REVIEW LETTERS, 2013, 110 (09)
[18]  
Ikeda S, 2010, NAT MATER, V9, P721, DOI [10.1038/NMAT2804, 10.1038/nmat2804]
[19]  
Joachim S, 2006, MAGNETISM FUNDAMENTA, P300
[20]   Hitting the limit of magnetic anisotropy [J].
Khajetoorians, Alexander Ako ;
Wiebe, Jens .
SCIENCE, 2014, 344 (6187) :976-977