Polynomial map factorization of symplectic maps

被引:1
|
作者
Rangarajan, G [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Ctr Theoret Studies, Bangalore 560012, Karnataka, India
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2003年 / 14卷 / 06期
关键词
symplectic integration; polynomial maps; Lie perturbation theory;
D O I
10.1142/S0129183103004991
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Long-term stability studies of nonlinear Hamiltonian systems require symplectic integration algorithms which are both fast and accurate. In this paper, we study a symplectic integration method wherein the symplectic map representing the Hamiltonian system is refactorized using polynomial symplectic maps. This method is analyzed for the three degree of freedom case. Finally, we apply this algorithm to study a large particle storage ring.
引用
收藏
页码:847 / 854
页数:8
相关论文
共 31 条
  • [1] Invariance of polynomial inequalities under polynomial maps
    Bialas-Ciez, Leokadia
    Calvi, Jean-Paul
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (02) : 449 - 464
  • [2] Symplectic tangent map for planetary motions
    Mikkola, S
    Innanen, K
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 74 (01) : 59 - 67
  • [3] Symplectic Tangent map for Planetary Motions
    Seppo Mikkola
    Kimmo Innanen
    Celestial Mechanics and Dynamical Astronomy, 1999, 74 : 59 - 67
  • [4] Iterated Ore polynomial maps
    Leroy, Andre
    Nasernejad, Mehrdad
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (03)
  • [5] Computing images of polynomial maps
    Corey Harris
    Mateusz Michałek
    Emre Can Sertöz
    Advances in Computational Mathematics, 2019, 45 : 2845 - 2865
  • [6] On the structure of isentropes of polynomial maps
    Bruin, Henk
    van Strien, Sebastian
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (03): : 381 - 392
  • [7] Computing images of polynomial maps
    Harris, Corey
    Michalek, Mateusz
    Sertoez, Emre Can
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2845 - 2865
  • [8] Robust chaos in polynomial unimodal maps
    Pérez, G
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (07): : 2431 - 2437
  • [9] Signatures of paths transformed by polynomial maps
    Colmenarejo, Laura
    Preiss, Rosa
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (04): : 695 - 717
  • [10] Signatures of paths transformed by polynomial maps
    Laura Colmenarejo
    Rosa Preiß
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 695 - 717