Training Keyword Spotting Models on Non-IID Data with Federated Learning

被引:19
作者
Hard, Andrew [1 ]
Partridge, Kurt [1 ]
Nguyen, Cameron [1 ]
Subrahmanya, Niranjan [1 ]
Shah, Aishanee [1 ]
Zhu, Pai [1 ]
Moreno, Ignacio Lopez [1 ]
Mathews, Rajiv [1 ]
机构
[1] Google LLC, Mountain View, CA 94043 USA
来源
INTERSPEECH 2020 | 2020年
关键词
federated learning; on-device learning; keyword spotting; wake word detection; non-iid data; data augmentation;
D O I
10.21437/Interspeech.2020-3023
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
We demonstrate that a production-quality keyword-spotting model can be trained on-device using federated learning and achieve comparable false accept and false reject rates to a centrally-trained model. To overcome the algorithmic constraints associated with fitting on-device data (which are inherently non-independent and identically distributed), we conduct thorough empirical studies of optimization algorithms and hyper parameter configurations using large-scale federated simulations. To overcome resource constraints, we replace memory intensive MTR data augmentation with SpecAugment, which reduces the false reject rate by 56%. Finally, to label examples (given the zero visibility into on-device data), we explore teacher-student training.
引用
收藏
页码:4343 / 4347
页数:5
相关论文
共 44 条
  • [1] Deep Learning with Differential Privacy
    Abadi, Martin
    Chu, Andy
    Goodfellow, Ian
    McMahan, H. Brendan
    Mironov, Ilya
    Talwar, Kunal
    Zhang, Li
    [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 308 - 318
  • [2] Alvarez R., ICASSP 2019 2019 IEE
  • [3] [Anonymous], 2018, IEEE ICC
  • [4] [Anonymous], 2019, ADV OPEN PROBLEMS FE
  • [5] Bonawitz K. A., 2016, NIPS WORKSH PRIV MUL
  • [6] Chen G., 2014, ICASSP
  • [7] Chen M, 2019, P 23 C COMP NAT LANG
  • [8] Dozat T., 2016, Incorporating nesterov momentum into adam, DOI DOI 10.1007/978-3-642-33483-2
  • [9] Dundar M., 2007, IJCAI 07
  • [10] Dwork C., 2006, 33 INT C AUT LANG 2, V4052