The immune microenvironment in vulvar (pre)cancer: review of literature and implications for immunotherapy

被引:20
作者
Abdulrahman, Ziena [1 ,2 ]
Kortekaas, Kim E. [2 ]
Van Steenwijk, Peggy J. De Vos [2 ]
Van der Burg, Sjoerd H. [1 ]
Van Poelgeest, Mariette I. E. [2 ]
机构
[1] Leiden Univ, Dept Med Oncol, Med Ctr, Leiden, Netherlands
[2] Leiden Univ, Dept Gynaecol, Med Ctr, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands
关键词
Human papilloma virus (HPV); immunology; immunotherapy; tumor microenvironment; usual vulvar intraepithelial neoplasia (uVIN); vulvar high-grade squamous intraepithelial lesion (vHSIL); vulvar squamous cell carcinoma (VSCC); SQUAMOUS-CELL CARCINOMA; REGULATORY T-CELLS; PHASE-II TRIAL; INTRAEPITHELIAL NEOPLASIA; HUMAN-PAPILLOMAVIRUS; LICHEN-SCLEROSUS; PD-L1; EXPRESSION; CERVICAL-CANCER; PHOTODYNAMIC THERAPY; MYELOID CELLS;
D O I
10.1080/14712598.2018.1542426
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction: Vulvar squamous cell carcinoma (VSCC) develops via two different pathways: TP53 mutations in a background of lichen sclerosus or a persistent infection with high-risk human papilloma virus (HPV). The latter group of tumor responds better to treatment than the non-virally induced VSCC. This may be explained by a difference in the tumor immune microenvironment (TME). Areas covered: This review summarizes literature on TME of VSCC and its precursors, and extrapolates this to foster the development of new therapeutic strategies. Expert opinion: Both types of VSCC and their precursors are infiltrated with variable numbers of M2 macrophages, regulatory T cells and CD8+ T cells, indicating that they express targetable tumor antigens. Type 1 T cell immunity in precursor lesions is associated with fewer recurrences and better clinical responses to immunotherapy. Escape of these lesions and progression toward VSCC is associated with the downregulation of HLA Class I, increased expression of co-inhibitory molecules, infiltration with immunosuppressive cells and the local production of immunosuppressive enzymes and cytokines. More in-depth studies of the VSCC TME are required to fully comprehend the impact of the immune system on VSCC, and subsequently to identify patients who will benefit from immunotherapeutic strategies.
引用
收藏
页码:1223 / 1233
页数:11
相关论文
共 50 条
[31]   Immune Landscape in Tumor Microenvironment: Implications for Biomarker Development and Immunotherapy [J].
Perez-Romero, Karim ;
Rodriguez, Ramon M. ;
Amedei, Amedeo ;
Barcelo-Coblijn, Gwendolyn ;
Lopez, Daniel H. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (15) :1-14
[32]   Immune deserts in head and neck squamous cell carcinoma: A review of challenges and opportunities for modulating the tumor immune microenvironment [J].
Farlow, Janice L. ;
Brenner, J. Chad ;
Lei, Yu L. ;
Chinn, Steven B. .
ORAL ONCOLOGY, 2021, 120
[33]   Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer [J].
Lazar, Daniela Cornelia ;
Avram, Mihaela Flavia ;
Romoan, Ioan ;
Cornianu, Marioara ;
Taban, Sorina ;
Goldis, Adrian .
WORLD JOURNAL OF GASTROENTEROLOGY, 2018, 24 (32) :3583-3616
[34]   Immunotherapy: Reshape the Tumor Immune Microenvironment [J].
Lv, Bingzhe ;
Wang, Yunpeng ;
Ma, Dongjiang ;
Cheng, Wei ;
Liu, Jie ;
Yong, Tao ;
Chen, Hao ;
Wang, Chen .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[35]   Senescence-related genes analysis in breast cancer reveals the immune microenvironment and implications for immunotherapy [J].
Zhong, Hua ;
Chang, Lijie ;
Pei, Shengbin ;
Kang, Yakun ;
Yang, Lili ;
Wu, Yifan ;
Chen, Nuo ;
Luo, Yicheng ;
Zhou, Yixiao ;
Xie, Jiaheng ;
Xia, Yiqin .
AGING-US, 2024, 16 (04)
[36]   Nanoparticles overcome adaptive immune resistance and enhance immunotherapy via targeting tumor microenvironment in lung cancer [J].
Zhang, Xin ;
Wang, Xuemei ;
Hou, Lijian ;
Xu, Zheng ;
Liu, Yu'e ;
Wang, Xueju .
FRONTIERS IN PHARMACOLOGY, 2023, 14
[37]   Shaping the battlefield: EGFR and KRAS tumor mutations' role on the immune microenvironment and immunotherapy responses in lung cancer [J].
Alsaed, Bassel ;
Bobik, Nina ;
Laitinen, Hanna ;
Nandikonda, Tanvi ;
Ilonen, Ilkka ;
Haikala, Heidi M. .
CANCER AND METASTASIS REVIEWS, 2025, 44 (03)
[38]   Immune Microenvironment Characteristics of Urachal Carcinoma and Its Implications for Prognosis and Immunotherapy [J].
Zhang, Xinke ;
Wang, Suijing ;
Nie, Run-Cong ;
Qu, Chunhua ;
Chen, Jierong ;
Yang, Yuanzhong ;
Cai, Muyan .
CANCERS, 2022, 14 (03)
[39]   The Immune Microenvironment in Mesothelioma: Mechanisms of Resistance to Immunotherapy [J].
Chu, Gerard J. ;
van Zandwijk, Nico ;
Rasko, John E. J. .
FRONTIERS IN ONCOLOGY, 2019, 9
[40]   Cervical cancer immune infiltration microenvironment identification, construction of immune scores, assisting patient prognosis and immunotherapy [J].
Yao, Shijie ;
Zhao, Liyang ;
Chen, Siming ;
Wang, Hua ;
Gao, Yang ;
Shao, Ning-Yi ;
Dai, Mengyuan ;
Cai, Hongbing .
FRONTIERS IN IMMUNOLOGY, 2023, 14