Classification of radioxenon spectra with deep learning algorithm

被引:6
作者
Azimi, Sepideh Alsadat [1 ]
Afarideh, Hossein [1 ]
Chai, Jong-Seo [2 ]
Kalinowski, Martin [3 ]
Gheddou, Abdelhakim [3 ]
Hofman, Radek [3 ]
机构
[1] Amirkabir Univ Technol, Fac Phys & Energy Engn, 350 Hafez Ave,Valiasr Sq, Tehran, Iran
[2] Sungkyunkwan Univ, Coll Informat & Commun Engn, Suwon, South Korea
[3] Preparatory Commiss Comprehens Nucl Test Ban Trea, Provis Tech Secretariat, VIC, Vienna, Austria
关键词
Radioxenon isotopes categorization; Beta-gamma spectra analysis; Deep learning; Convolutional neural network (CNN); Comprehensive Nuclear-Test-Ban Treaty Orga-nization (CTBTO); TEST-BAN TREATY; NUCLEAR-TEST; CTBT VERIFICATION; EUROPE; LIMITS;
D O I
10.1016/j.jenvrad.2021.106718
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, we propose for the first time a model of classification for Beta-Gamma coincidence radioxenon spectra using a deep learning approach through the convolution neural network (CNN) technique. We utilize the entire spectrum of actual data from a noble gas system in Charlottesville (USX75 station) between 2012 and 2019. This study shows that the deep learning categorization can be done as an important pre-screening method without directly involving critical limits and abnormal thresholds. Our results demonstrate that the proposed approach of combining nuclear engineering and deep learning is a promising tool for assisting experts in accelerating and optimizing the review process of clean background and CTBT-relevant samples with high classification average accuracies of 92% and 98%, respectively.
引用
收藏
页数:8
相关论文
共 40 条
[1]  
[Anonymous], 2011, MONITORING RES REV G
[2]   DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome [J].
Azarkhalili, Behrooz ;
Saberi, Ali ;
Chitsaz, Hamidreza ;
Sharifi-Zarchi, Ali .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]  
Bellinger C, 2012, LECT NOTES COMPUT SC, V7190, P1, DOI 10.1007/978-3-642-29356-6_1
[4]  
Biegalski KMF, 2001, J RADIOANAL NUCL CH, V248, P673
[5]   The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: The case for data fusion [J].
Burnett, Jonathan L. ;
Miley, Harry S. ;
Bowyer, Theodore W. ;
Cameron, Ian M. .
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2018, 189 :175-181
[6]   Radioxenon net count calculations revisited [J].
Cooper, Matthew W. ;
Auer, Matthias ;
Bowyer, Theodore W. ;
Casey, Leslie A. ;
Elmgren, Klas ;
Ely, James H. ;
Foxe, Michael P. ;
Gheddou, Abdelhakim ;
Gohla, Herbert ;
Hayes, James C. ;
Johnson, Christine M. ;
Kalinowski, Martin ;
Klingberg, Franziska J. ;
Liu, Boxue ;
Mayer, Michael F. ;
McIntyre, Justin I. ;
Plenteda, Romano ;
Popov, Vladimir ;
Zahringer, Matthias .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2019, 321 (02) :369-382
[7]  
Coyne J, 2009, EGU GEN ASS C, P9626
[8]   A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area [J].
Dieu Tien Bui ;
Nhat-Duc Hoang ;
Martinez-Alvarez, Francisco ;
Phuong-Thao Thi Ngo ;
Pham Viet Hoa ;
Tien Dat Pham ;
Samui, Pijush ;
Costache, Romulus .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 701
[9]  
Do Koo Y., 2018, 2018 INT C EL INF CO, P1
[10]   Artificial intelligence for decision making in the era of Big Data - evolution, challenges and research agenda [J].
Duan, Yanqing ;
Edwards, John S. ;
Dwivedi, Yogesh K. .
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2019, 48 :63-71