High areal capacitance of vanadium oxides intercalated Ti3C2 MXene for flexible supercapacitors with high mass loading

被引:31
作者
Zhang, Zezhong [1 ]
Guo, Miao [2 ]
Tang, Yanhong [1 ]
Liu, Chengbin [2 ]
Zhou, Jian [1 ]
Yuan, Jili [1 ]
Gu, Jiayun [2 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
areal capacitance; mass loading; flexible supercapacitors; Ti3C2; MXene; SOLID-STATE SUPERCAPACITORS; ELECTROCHEMICAL PERFORMANCE; COMPOSITE; NANOCOMPOSITES; ELECTRODE; FILM;
D O I
10.1088/1361-6528/ab6689
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flexible all-solid-state supercapacitors (ASSSs) have caught the scientific attention to meet the explosive demand for portable and wearable electronic devices. However, it is difficult for flexible electrode materials to obtain a high areal capacitance at a high mass loading, which limits their commercial applications. In this study, vanadium oxide (V2O5) nanoparticles are introduced into Ti3C2 flakes with the aid of cetyltrimethylammonium bromide (CTAB). The intercalation of V2O5 particles in the interlayer of Ti3C2 establishes a hierarchical structure and facilitates the electrolyte penetration. As a result, the prepared CT-Ti3C2@V2O5 composite electrode achieves a high areal capacitance of 2065 mF cm(-2) at 3 mA cm(-2) and superior active mass loading (15 mg cm(-2)). Meanwhile, over 93% capacitance is maintained after 6000 cycles at 18 mA cm(-2). The ASSS based on CT-Ti3C2@V2O5 delivers a high areal capacitance of 477 mF cm(-2) at 1 mV s(-1) and exhibits stable performance at different bending states, which reaches to the advanced level for the ASSSs based on MXenes.
引用
收藏
页数:10
相关论文
共 48 条
[1]  
[Anonymous], 2016, Adv. Energy Mater., DOI DOI 10.1002/AENM.201600969
[2]   Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries [J].
Armstrong, Mark J. ;
Burke, David M. ;
Gabriel, Timothy ;
O'Regan, Colm ;
O'Dwyer, Colm ;
Petkov, Nikolay ;
Holmes, Justin D. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (40) :12568-12578
[3]   Flexible Graphene-Based Supercapacitors: A Review [J].
Chee, W. K. ;
Lim, H. N. ;
Zainal, Z. ;
Huang, N. M. ;
Harrison, I. ;
Andou, Y. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (08) :4153-4172
[4]   Ti3C2Tx MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries [J].
Chen, Hong ;
Chen, Nan ;
Zhang, Meina ;
Li, Malin ;
Gao, Yu ;
Wang, Chunzhong ;
Chen, Gang ;
Du, Fei .
NANOTECHNOLOGY, 2019, 30 (13)
[5]   The surface properties of vanadium compounds by X-ray photoelectron spectroscopy [J].
Choi, JG .
APPLIED SURFACE SCIENCE, 1999, 148 (1-2) :64-72
[6]   Cold pressing-built microreactors to thermally manipulate microstructure of MXene film as an anode for high-performance lithium-ion batteries [J].
Cui, Yu ;
Xie, Xi ;
Yang, Rui ;
Qin, Jinwen ;
Zheng, Lirong ;
Cao, Minhua .
ELECTROCHIMICA ACTA, 2019, 305 :11-23
[7]   Effect of Meso- and Micro-Porosity in Carbon Electrodes on Atomic Layer Deposition of Pseudocapacitive V2O5 for High Performance Supercapacitors [J].
Daubert, James S. ;
Lewis, Neal P. ;
Gotsch, Hannah N. ;
Mundy, J. Zachary ;
Monroe, David N. ;
Dickey, Elizabeth C. ;
Losego, Mark D. ;
Parsons, Gregory N. .
CHEMISTRY OF MATERIALS, 2015, 27 (19) :6524-6534
[8]   Enhanced Supercapacitor Performance of Mn3O4 Nanocrystals by Doping Transition-Metal Ions [J].
Dong, Ruiting ;
Ye, Qinglan ;
Kuang, Lili ;
Lu, Xu ;
Zhang, Ying ;
Zhang, Xue ;
Tan, Guojin ;
Wen, Yanxuan ;
Wang, Fan .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (19) :9508-9516
[9]   Towards flexible solid-state supercapacitors for smart and wearable electronics [J].
Dubal, Deepak P. ;
Chodankar, Nilesh R. ;
Kim, Do-Heyoung ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (06) :2065-2129
[10]   Graphene for batteries, supercapacitors and beyond [J].
El-Kady, Maher F. ;
Shao, Yuanlong ;
Kaner, Richard B. .
NATURE REVIEWS MATERIALS, 2016, 1 (07)