Entanglement entropy, conformal invariance and extrinsic geometry

被引:246
作者
Solodukhin, Sergey N. [1 ]
机构
[1] Univ Tours, CNRS, UMR 6083, Lab Math & Phys Theor, F-37200 Tours, France
关键词
D O I
10.1016/j.physletb.2008.05.071
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the conformal invariance and the holographic correspondence to fully specify the dependence of entanglement entropy on the extrinsic geometry of the 2d surface Sigma that separates two subsystems of quantum strongly coupled N = 4SU(N) superconformal gauge theory. We extend this result and calculate entanglement entropy of a generic 4d conformal field theory. As a byproduct, we obtain a closed-form expression for the entanglement entropy in flat space-time when Sigma is sphere S-2 and when Sigma is two-dimensional cylinder. The contribution of the type A conformal anomaly to entanglement entropy is always determined by topology of surface Sigma while the dependence of the entropy on the extrinsic geometry of Sigma is due to the type B conformal anomaly. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 33 条
[1]   Operator product expansion for Wilson loops and surfaces in the large N limit -: art. no. 105023 [J].
Berenstein, D ;
Corrado, R ;
Fischler, W ;
Maldacena, J .
PHYSICAL REVIEW D, 1999, 59 (10) :1-10
[2]  
BERGER MS, ARXIV08014564 HEPTH
[3]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[4]  
BRUSTEIN R, 2006, JHEP, V601, P98
[5]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[6]   ON GEOMETRIC ENTROPY [J].
CALLAN, C ;
WILCZEK, F .
PHYSICS LETTERS B, 1994, 333 (1-2) :55-61
[7]   A finite entanglement entropy and the c-theorem [J].
Casini, H ;
Huerta, M .
PHYSICS LETTERS B, 2004, 600 (1-2) :142-150
[8]   EFFECTIVE ACTIONS WITH FIXED-POINTS [J].
DOWKER, JS .
PHYSICAL REVIEW D, 1994, 50 (10) :6369-6373
[9]  
Emparan R, 2006, J HIGH ENERGY PHYS
[10]   DYNAMICAL ORIGIN OF THE ENTROPY OF A BLACK-HOLE [J].
FROLOV, V ;
NOVIKOV, I .
PHYSICAL REVIEW D, 1993, 48 (10) :4545-4551