Modulus of continuity for quasiregular mappings with finite distortion extension

被引:0
作者
Zapadinskaya, Aleksandra [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
关键词
mappings of finite distortion; quasiregular; quasidisk;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a sharp modulus of continuity for those planar quasiregular mappings defined in a domain with a cone condition that admit an extension to a mapping of locally exponentially integrable distortion.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 11 条
[1]  
Becker J., 1988, COMPLEX VARIABLES TH, V10, P267
[2]   SOLUTIONS OF THE BELTRAMI EQUATION WITH THE NORM OF MU TO INFINITY = 1 [J].
DAVID, G .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1988, 13 (01) :25-70
[3]  
Federer H., 2014, GEOMETRIC MEASURE TH
[4]   UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC [J].
GEHRING, FW ;
OSGOOD, BG .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 :50-74
[5]   On the degenerate Beltrami equation [J].
Gutlyanskii, V ;
Martio, O ;
Sugawa, T ;
Vuorinen, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (03) :875-900
[6]  
Iwaniec T., 2001, GEOMETRIC FUNCTION T
[7]   Mappings of finite distortion: The sharp modulus of continuity [J].
Koskela, P ;
Onninen, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) :1905-1920
[8]   Mappings of finite distortion: Formation of cusps [J].
Koskela, Pekka ;
Takkinen, Juhani .
PUBLICACIONS MATEMATIQUES, 2007, 51 (01) :223-242
[9]  
Lehto O., 1987, Univalent functions and Teichmuller spaces
[10]   A note on mappings of finite distortion: The sharp modulus of continuity [J].
Onninen, J ;
Zhong, X .
MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (02) :329-335