Robust Aggregation for Federated Learning

被引:216
|
作者
Pillutla, Krishna [1 ]
Kakade, Sham M. [2 ]
Harchaoui, Zaid [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Harvard Univ, Cambridge, MA 02138 USA
关键词
Collaborative work; Robustness; Signal processing algorithms; Servers; Aggregates; Privacy; Optimization; Federated learning; robust aggregation; corrupted updates; distributed learning; data privacy; LEAST-SQUARES; LOCATION; OPTIMIZATION; MINIMIZATION; COVARIANCE; ESTIMATORS;
D O I
10.1109/TSP.2022.3153135
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel approach to federated learning that endows its aggregation process with greater robustness to potential poisoning of local data or model parameters of participating devices. The proposed approach, Robust Federated Aggregation (RFA), relies on the aggregation of updates using the geometric median, which can be computed efficiently using a Weiszfeld-type algorithm. RFA is agnostic to the level of corruption and aggregates model updates without revealing each device's individual contribution. We establish the convergence of the robust federated learning algorithm for the stochastic learning of additive models with least squares. We also offer two variants of RFA: a faster one with one-step robust aggregation, and another one with on-device personalization. We present experimental results with additive models and deep networks for three tasks in computer vision and natural language processing. The experiments show that RFA is competitive with the classical aggregation when the level of corruption is low, while demonstrating greater robustness under high corruption.
引用
收藏
页码:1142 / 1154
页数:13
相关论文
共 50 条
  • [1] Robust Aggregation Function in Federated Learning
    Taheri, Rahim
    Arabikhan, Farzad
    Gegov, Alexander
    Akbari, Negar
    ADVANCES IN INFORMATION SYSTEMS, ARTIFICIAL INTELLIGENCE AND KNOWLEDGE MANAGEMENT, ICIKS 2023, 2024, 486 : 168 - 175
  • [2] Byzantine-Robust Aggregation for Federated Learning with Reinforcement Learning
    Yan, Sizheng
    Du, Junping
    Xue, Zhe
    Li, Ang
    WEB AND BIG DATA, APWEB-WAIM 2024, PT IV, 2024, 14964 : 152 - 166
  • [3] Robust Aggregation for Federated Learning by Minimum γ-Divergence Estimation
    Li, Cen-Jhih
    Huang, Pin-Han
    Ma, Yi-Ting
    Hung, Hung
    Huang, Su-Yun
    ENTROPY, 2022, 24 (05)
  • [4] Federated Learning Aggregation: New Robust Algorithms with Guarantees
    Ben Mansour, Adnan
    Carenini, Gaia
    Duplessis, Alexandre
    Naccache, David
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 721 - 726
  • [5] Robust Secure Aggregation with Lightweight Verification for Federated Learning
    Huang, Chao
    Yao, Yanqing
    Zhang, Xiaojun
    Teng, Da
    Wang, Yingdong
    Zhou, Lei
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 582 - 589
  • [6] RTGA: Robust ternary gradients aggregation for federated learning
    Yang, Chengang
    Xiao, Danyang
    Cao, Bokai
    Wu, Weigang
    INFORMATION SCIENCES, 2022, 616 : 427 - 443
  • [7] A Privacy Robust Aggregation Method Based on Federated Learning in the IoT
    Li, Qingtie
    Wang, Xuemei
    Ren, Shougang
    ELECTRONICS, 2023, 12 (13)
  • [8] Privacy Preservation for Federated Learning With Robust Aggregation in Edge Computing
    Liu, Wentao
    Xu, Xiaolong
    Li, Dejuan
    Qi, Lianyong
    Dai, Fei
    Dou, Wanchun
    Ni, Qiang
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 7343 - 7355
  • [9] Amplitude-Aligned Personalization and Robust Aggregation for Federated Learning
    Jiang, Yongqi
    Chen, Siguang
    Bao, Xiangwen
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (03): : 535 - 547
  • [10] Shielding Federated Learning: Robust Aggregation with Adaptive Client Selection
    Wan, Wei
    Hu, Shengshan
    Lu, Jianrong
    Zhang, Leo Yu
    Jin, Hai
    He, Yuanyuan
    PROCEEDINGS OF THE THIRTY-FIRST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2022, 2022, : 753 - 760