TEMPORAL AXIAL ATTENTION FOR LIDAR-BASED 3D OBJECT DETECTION IN AUTONOMOUS DRIVING

被引:1
作者
Carranza-Garcia, Manuel [1 ]
Riquelme, Jose C. [1 ]
Zakhor, Avideh [2 ]
机构
[1] Univ Seville, Div Comp Sci, Seville, Spain
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA USA
来源
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2022年
关键词
autonomous driving; attention; deep learning; LiDAR; object detection;
D O I
10.1109/ICIP46576.2022.9897855
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D object detection is a core problem of the perception systems of autonomous vehicles. Despite recent progress in the field, the temporal aspect of LiDAR data has not been fully explored in current state-of-the-art detectors. This work proposes a modified CenterPoint architecture that uses temporal axial attention to exploit the sequential nature of autonomous driving data for 3D object detection. The last ten LiDAR sweeps are split into three groups of frames, and the axial attention transformer block captures both spatial and temporal dependencies among the features extracted from each group. Our proposal is evaluated using the nuScenes dataset. With this novel approach, we obtain an average mAP improvement of 3.8 and 2.3 points over the original CenterPoint in the fine/coarse pillar settings, respectively.
引用
收藏
页码:201 / 205
页数:5
相关论文
共 20 条
[1]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[2]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[3]   Temporal LiDAR Frame Prediction for Autonomous Driving [J].
Deng, David ;
Zakhor, Avideh .
2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, :829-837
[4]  
Dosovitskiy A, 2021, ICLR
[5]  
El Sallab A., 2018, NEURAL INFORM PROCES
[6]   RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection [J].
Fan, Lue ;
Xiong, Xuan ;
Wang, Feng ;
Wang, Naiyan ;
Zhang, Zhaoxiang .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :2898-2907
[7]  
Ho JAT, 2019, Arxiv, DOI [arXiv:1912.12180, DOI 10.48550/ARXIV.1912.12180, 10.48550/ARXIV.1912.12180]
[8]   Real-time Spatial-temporal Context Approach for 3D Object Detection using LiDAR [J].
Kumar, K. S. Chidanand ;
Al-Stouhi, Samir .
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS (VEHITS), 2020, :432-439
[9]   PointPillars: Fast Encoders for Object Detection from Point Clouds [J].
Lang, Alex H. ;
Vora, Sourabh ;
Caesar, Holger ;
Zhou, Lubing ;
Yang, Jiong ;
Beijbom, Oscar .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :12689-12697
[10]  
McCrae S, 2020, IEEE IMAGE PROC, P2661, DOI [10.1109/icip40778.2020.9191134, 10.1109/ICIP40778.2020.9191134]