ANN Based Power Management Strategy For Standalone Microgrids

被引:0
作者
Sreekumar, Preetha [1 ]
Alhosani, Maitha Ali Rashed Ali [1 ]
Khadkikar, Vinod [2 ]
机构
[1] Higher Coll Technol, Dept Elect Engn, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates
来源
IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY | 2021年
关键词
Adaptive control; droop control; intermittent power generation; islanding; microgrid; PREDICTION;
D O I
10.1109/IECON48115.2021.9589534
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a solar power generation prediction technique using artificial neural network. The predicted data is then applied to the adaptive power management strategy for Photovoltaic (PV) generation units in a standalone microgrid. The intermittent nature of solar power generation leads to major challenges in power system planning and load sharing. Prediction of solar power generation based on weather conditions and the proper use of this data in power management strategies improve the performance of existing standalone systems. This paper proposes an adaptive control strategy, which uses the predicted value of solar generation to determine the mode of operation. An ANN model is developed and trained using the dependency of solar power generation on weather parameters. The trained model is used to predict the expected solar power generation at any time. The applicability of the proposed adaptive control method is analyzed using Matlab/Simulink based simulation studies.
引用
收藏
页数:6
相关论文
共 19 条
  • [1] Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
    Behera, Manoja Kumar
    Majumder, Irani
    Nayak, Niranjan
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2018, 21 (03): : 428 - 438
  • [2] Forecasting-Based Power Ramp-Rate Control Strategies for Utility-Scale PV Systems
    Chen, Xiaoyang
    Du, Yang
    Wen, Huiqing
    Jiang, Lin
    Xiao, Weidong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (03) : 1862 - 1871
  • [3] Decentralized Parallel Operation of Inverters Sharing Unbalanced and Nonlinear Loads
    De, Dipankar
    Ramanarayanan, Venkataramanan
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (12) : 2995 - 3025
  • [4] Decentralized control for parallel operation of distributed generation inverters using resistive output impedance
    Guerrero, Josep M.
    Matas, Jose
    Garcia de Vicuna, Luis
    Castilla, Miguel
    Miret, Jaume
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007, 54 (02) : 994 - 1004
  • [5] Modern Machine Learning Techniques for Univariate Tunnel Settlement Forecasting: A Comparative Study
    Hu, Min
    Li, Wei
    Yan, Ke
    Ji, Zhiwei
    Hu, Haigen
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [6] Day-Ahead Prediction of Bihourly Solar Radiance With a Markov Switch Approach
    Jiang, Yu
    Long, Huan
    Zhang, Zijun
    Song, Zhe
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2017, 8 (04) : 1536 - 1547
  • [7] Mahmood H, 2012, IEEE IND ELEC, P3412, DOI 10.1109/IECON.2012.6389351
  • [8] PAI S, 2016, P IEEE INT C POW EL, V51, P1, DOI DOI 10.1145/2983990.2984015
  • [9] Multi-Model Ensemble for day ahead prediction of photovoltaic power generation
    Pierro, Marco
    Bucci, Francesco
    De Felice, Matteo
    Maggioni, Enrico
    Moser, David
    Perotto, Alessandro
    Spada, Francesco
    Cornaro, Cristina
    [J]. SOLAR ENERGY, 2016, 134 : 132 - 146
  • [10] A probabilistic approach to the estimation of regional photovoltaic power production
    Saint-Drenan, Y. M.
    Good, G. H.
    Braun, M.
    [J]. SOLAR ENERGY, 2017, 147 : 257 - 276