Speeding up critical system dynamics through optimized evolution

被引:63
作者
Caneva, Tommaso [1 ,2 ]
Calarco, Tommaso [2 ]
Fazio, Rosario [3 ,4 ]
Santoro, Giuseppe E. [1 ,5 ,6 ]
Montangero, Simone [2 ]
机构
[1] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy
[2] Univ Ulm, Inst Quanteninformat Verarbeitung, D-89069 Ulm, Germany
[3] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[4] CNR, Ist Nanosci, I-56126 Pisa, Italy
[5] Democritos Natl Simulat Ctr, INFM, CNR, I-34014 Trieste, Italy
[6] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 01期
关键词
QUANTUM PHASE-TRANSITION; PHYSICS;
D O I
10.1103/PhysRevA.84.012312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The number of defects which are generated upon crossing a quantum phase transition can be minimized by choosing properly designed time-dependent pulses. In this work we determine what are the ultimate limits of this optimization. We discuss under which conditions the production of defects across the phase transition is vanishing small. Furthermore we show that the minimum time required to enter this regime is T similar to pi/Delta, where Lambda is the minimum spectral gap, unveiling an intimate connection between an optimized unitary dynamics and the intrinsic measure of the Hilbert space for pure states. Surprisingly, the dynamics is nonadiabatic; this result can be understood by assuming a simple two-level dynamics for the many-body system. Finally we classify the possible dynamical regimes in terms of the action s = T Delta.
引用
收藏
页数:5
相关论文
共 45 条
[1]   TIME IN QUANTUM THEORY AND UNCERTAINTY RELATION FOR TIME AND ENERGY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1961, 122 (05) :1649-&
[2]   Anderson localization makes adiabatic quantum optimization fail [J].
Altshuler, Boris ;
Krovi, Hari ;
Roland, Jeremie .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (28) :12446-12450
[3]   First-order quantum phase transition in adiabatic quantum computation [J].
Amin, M. H. S. ;
Choi, V. .
PHYSICAL REVIEW A, 2009, 80 (06)
[4]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[5]  
[Anonymous], 1962, QUANTUM MECH
[6]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[7]   QUANTUM DECAY AND THE MANDELSTAM-TAMM TIME ENERGY INEQUALITY [J].
BHATTACHARYYA, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (13) :2993-2996
[8]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[9]   LARGE-SIZE CRITICAL-BEHAVIOR OF INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R .
PHYSICAL REVIEW B, 1983, 28 (07) :3955-3967
[10]   Control of quantum phenomena: past, present and future [J].
Brif, Constantin ;
Chakrabarti, Raj ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2010, 12