Properties of solutions of higher order difference equations

被引:6
作者
Szmanda, B [1 ]
机构
[1] Poznan Univ Technol, Inst Math, PL-60965 Poznan, Poland
关键词
nonoscillatory solution; difference equations;
D O I
10.1016/S0895-7177(98)00157-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the study of asymptotic behavior of solutions of the nonlinear difference equation Delta(m)[u(n) + p(n)u(n - k)] = q(n)f(u(r(n))), m greater than or equal to 1, n is an element of N, where Delta(m) is the m(th)-order forward difference operator p : N --> R, q: N --> [0, infinity), tau : N --> Z, k is a positive integer, f : R --> R, uf(u) > 0 for u not equal 0. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 24 条
[1]  
AGARWAL RP, 1984, INT SER NUMER MATH, V71, P95
[2]  
AGARWAL RP, 1985, ANAL STJIETIFICE U I, V31, P165
[3]  
AGARWAL RP, 1983, ANAL STJIETIFICE U I, V29, P85
[4]  
Agarwal RP, 1992, Difference equations and inequalities
[5]  
CHENG SS, 1995, MATH COMPUT MODEL, V22, P59
[6]  
Gy??ri I., 1991, OSCILLATION THEORY D
[7]   A 2ND-ORDER NON-LINEAR DIFFERENCE EQUATION - OSCILLATION AND ASYMPTOTIC-BEHAVIOR [J].
HOOKER, JW ;
PATULA, WT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 91 (01) :9-29
[8]  
Kelley W. G., 1991, Difference equations: An introduction with applications
[9]  
KOCIC VL, 1993, GLOBAL BEHAV NONLINE
[10]  
LADAS G, 1992, INT J MATH MATH SCI, V15, P129