Existence and nonexistence of global solutions in time for a reaction-diffusion system with inhomogeneous terms

被引:10
作者
Igarasht, Takefurni [1 ]
Umeda, Noriaki
机构
[1] Nippon Inst Technol, Tokyo, Japan
[2] Univ Tokyo, Tokyo, Japan
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2008年 / 51卷 / 01期
关键词
reaction-diffusion; global existence; inhomogeneous term;
D O I
10.1619/fesi.51.17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem for the reaction-diffusion system with inhomogeneous terms. In this paper we show the existence and nonexistence of global solution in time. Especially, for the nonexistence we extend the conditions of the nonlinear terms and the initial data to the weaker conditions. We prove that for the nonlinear term and the initial data whose support is included in some unbounded domain (for instance, the corn), there do not exist the global solutions in time.
引用
收藏
页码:17 / 37
页数:21
相关论文
共 21 条
[1]   ON THE EXISTENCE AND NONEXISTENCE OF GLOBAL-SOLUTIONS OF REACTION-DIFFUSION EQUATIONS IN SECTORIAL DOMAINS [J].
BANDLE, C ;
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 316 (02) :595-622
[2]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[3]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[4]   Blow-up directions at space infinity for solutions of semilinear heat equations [J].
Giga, Yoshikazu ;
Umeda, Noriaki .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2005, 23 (1-2) :9-28
[5]   Criticality for some evolution equations [J].
Guedda, M ;
Kirane, M .
DIFFERENTIAL EQUATIONS, 2001, 37 (04) :540-550
[6]  
Hamada T, 1995, Tsukuba J Math, V19, P15
[7]   NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS [J].
HAYAKAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07) :503-505
[8]   Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems [J].
Kirane, M ;
Qafsaoui, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) :217-243
[9]   GROWING UP PROBLEM FOR SEMILINEAR HEAT EQUATIONS [J].
KOBAYASHI, K ;
SIRAO, T ;
TANAKA, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1977, 29 (03) :407-424
[10]   GLOBAL EXISTENCE, LARGE TIME BEHAVIOR AND LIFE-SPAN OF SOLUTIONS OF A SEMILINEAR PARABOLIC CAUCHY-PROBLEM [J].
LEE, TY ;
NI, WM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (01) :365-378