Soliton gas in integrable dispersive hydrodynamics

被引:60
作者
El, Gennady A. [1 ]
机构
[1] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
nonlinear dynamics; classical integrability; non-linear Schroedinger equation; NONLINEAR SCHRODINGER-EQUATION; DE-VRIES EQUATION; KINETIC-EQUATION; THERMODYNAMIC LIMIT; SELF-MODULATION; SHOCK-WAVES; TURBULENCE; WATER; KDV; INSTABILITY;
D O I
10.1088/1742-5468/ac0f6d
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We review the spectral theory of soliton gases in integrable dispersive hydrodynamic systems. We first present a phenomenological approach based on the consideration of phase shifts in pairwise soliton collisions and leading to the kinetic equation for a non-equilibrium soliton gas. Then, a more detailed theory is presented in which soliton gas dynamics are modelled by a thermodynamic type limit of modulated finite-gap spectral solutions of the Korteweg-de Vries and the focusing nonlinear Schrodinger (NLS) equations. For the focusing NLS equation the notions of soliton condensate and breather gas are introduced that are related to the phenomena of spontaneous modulational instability and the rogue wave formation. The integrability properties of the kinetic equation for soliton gas are discussed and some physically relevant solutions are presented and compared with direct numerical simulations of dispersive hydrodynamic systems.
引用
收藏
页数:69
相关论文
共 148 条
[1]   Integrable hydrodynamics of Calogero-Sutherland model: bidirectional Benjamin-Ono equation [J].
Abanov, Alexander G. ;
Bettelheim, Eldad ;
Wiegmann, Paul .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (13)
[2]  
Ablowitz M. J., 2011, NONLINEAR DISPERSIVE
[3]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[4]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA
[5]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[6]   Rogue Waves With Rational Profiles in Unstable Condensate and Its Solitonic Model [J].
Agafontsev, D. S. ;
Gelash, A. A. .
FRONTIERS IN PHYSICS, 2021, 9
[7]   Extreme rogue wave generation from narrowband partially coherent waves [J].
Agafontsev, D. S. ;
Randoux, S. ;
Suret, P. .
PHYSICAL REVIEW E, 2021, 103 (03)
[8]   Integrable turbulence generated from modulational instability of cnoidal waves [J].
Agafontsev, D. S. ;
Zakharov, V. E. .
NONLINEARITY, 2016, 29 (11) :3551-3578
[9]   Integrable turbulence and formation of rogue waves [J].
Agafontsev, D. S. ;
Zakharov, V. E. .
NONLINEARITY, 2015, 28 (08) :2791-2821
[10]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)