Predicting Daily Activities From Egocentric Images Using Deep Learning

被引:36
|
作者
Castro, Daniel [1 ]
Hickson, Steven [1 ]
Bettadapura, Vinay [1 ]
Thomaz, Edison [1 ]
Abowd, Gregory [1 ]
Christensen, Henrik [1 ]
Essa, Irfan [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
ISWC 2015: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS | 2015年
基金
美国国家卫生研究院;
关键词
Wearable Computing; Activity Prediction; Health; Egocentric Vision; Deep Learning; Convolutional Neural Networks; Late Fusion Ensemble;
D O I
10.1145/2802083.2808398
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a method to analyze images taken from a passive egocentric wearable camera along with the contextual information, such as time and day of week, to learn and predict everyday activities of an individual. We collected a dataset of 40,103 egocentric images over a 6 month period with 19 activity classes and demonstrate the benefit of state-of-the-art deep learning techniques for learning and predicting daily activities. Classification is conducted using a Convolutional Neural Network (CNN) with a classification method we introduce called a late fusion ensemble. This late fusion ensemble incorporates relevant contextual information and increases our classification accuracy. Our technique achieves an overall accuracy of 83.07% in predicting a person's activity across the 19 activity classes. We also demonstrate some promising results from two additional users by fine-tuning the classifier with one day of training data.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [21] Predicting gastric cancer tumor mutational burden from histopathological images using multimodal deep learning
    Li, Jing
    Liu, Haiyan
    Liu, Wei
    Zong, Peijun
    Huang, Kaimei
    Li, Zibo
    Li, Haigang
    Xiong, Ting
    Tian, Geng
    Li, Chun
    Yang, Jialiang
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (03) : 228 - 238
  • [22] Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods
    Rong, Qingyuan
    Wei, Han
    Huang, Xingyi
    Bao, Hua
    COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 184
  • [23] Predicting the Severity of COVID-19 from Lung CT Images Using Novel Deep Learning
    Ahmad Imwafak Alaiad
    Esraa Ahmad Mugdadi
    Ismail Ibrahim Hmeidi
    Naser Obeidat
    Laith Abualigah
    Journal of Medical and Biological Engineering, 2023, 43 : 135 - 146
  • [24] ThermoPore: Predicting part porosity based on thermal images using deep learning
    Pak, Peter
    Ogoke, Francis
    Polonsky, Andrew
    Garland, Anthony
    Bolintineanu, Dan S.
    Moser, Dan R.
    Arnhart, Mary
    Madison, Jonathan
    Ivanoff, Thomas
    Mitchell, John
    Jared, Bradley
    Salzbrenner, Brad
    Heiden, Michael J.
    Farimani, Amir Barati
    ADDITIVE MANUFACTURING, 2024, 95
  • [25] Predicting Age-related Macular Degeneration Progression with Longitudinal Fundus Images Using Deep Learning
    Lee, Junghwan
    Wanyan, Tingyi
    Chen, Qingyu
    Keenan, Tiarnan D. L.
    Glicksberg, Benjamin S.
    Chew, Emily Y.
    Lu, Zhiyong
    Wang, Fei
    Peng, Yifan
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 : 11 - 20
  • [26] Fruit recognition from images using deep learning
    Muresan, Horea
    Oltean, Mihai
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2018, 10 (01) : 26 - 42
  • [27] Story Generation from Images Using Deep Learning
    Alnami, Abrar
    Almasre, Miada
    Al-Malki, Norah
    INFORMATION, COMMUNICATION AND COMPUTING TECHNOLOGY (ICICCT 2021), 2021, 1417 : 198 - 208
  • [28] Egocentric Vision for Human Activity Recognition Using Deep Learning
    Douache, Malika
    Benmoussat, Badra Nawal
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2023, 19 (06): : 730 - 744
  • [29] Vehicle Detection from Aerial Images Using Deep Learning: A Comparative Study
    Ammar, Adel
    Koubaa, Anis
    Ahmed, Mohanned
    Saad, Abdulrahman
    Benjdira, Bilel
    ELECTRONICS, 2021, 10 (07)
  • [30] Liver segmentation from computed tomography images using cascade deep learning
    Araujo, Jose Denes Lima
    da Cruz, Luana Batista
    Diniz, Joao Otavio Bandeira
    Ferreira, Jonnison Lima
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140