Empirical mode decomposition, fractional Gaussian noise and hurst exponent estimation

被引:0
作者
Rilling, G [1 ]
Flandrin, P [1 ]
Gonçalvès, P [1 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5672, Phys Lab, F-69364 Lyon, France
来源
2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Huang's data-driven technique of Empirical Mode Decomposition (EMD) is applied to the versatile, broadband, model of fractional Gaussian noise (fGn). The spectral analysis and statistical characterization of the obtained modes reveal an equivalent filter bank structure together with Gamma distributed variances, both sharing some properties with wavelet decompositions. These common features are then used to mimic wavelet based techniques aimed at estimating the Hurst exponent.
引用
收藏
页码:489 / 492
页数:4
相关论文
共 50 条
[21]   The Effect of the Underlying Distribution in Hurst Exponent Estimation [J].
Angel Sanchez, Miguel ;
Trinidad, Juan E. ;
Garcia, Jose ;
Fernandez, Manuel .
PLOS ONE, 2015, 10 (05)
[22]   Method for Estimating the Hurst Exponent of Fractional Brownian Motion [J].
A. V. Savitskii .
Doklady Mathematics, 2019, 100 :564-567
[23]   Hurst exponent estimation using neural network [J].
Mukherjee, Somenath ;
Sadhukhan, Bikash ;
Das, Arghya Kusum ;
Chaudhuri, Abhra .
INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2023, 26 (02) :157-170
[24]   ESTIMATION OF HURST EXPONENT FOR THE FINANCIAL TIME SERIES [J].
Kumar, J. ;
Manchanda, P. .
MODELLING OF ENGINEERING AND TECHNOLOGICAL PROBLEMS, 2009, 1146 :272-283
[25]   Noise filtering using Empirical Mode Decomposition [J].
Boudraa, A. O. ;
CCexus, J. ;
Benramdane, S. ;
Beghdadi, A. .
2007 9TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1-3, 2007, :1409-+
[26]   NOISE-MODULATED EMPIRICAL MODE DECOMPOSITION [J].
Tsui, Po-Hsiang ;
Chang, Chien-Cheng ;
Huang, Norden E. .
ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2010, 2 (01) :25-37
[27]   A Novel Gaussian Window Approach for Empirical Mode Decomposition [J].
De Wu, Shuen ;
Wu, Chiu-Wen ;
Liu, Cha-Lin ;
Huang, Yan-Hao ;
Lee, Kung-Yen .
ADVANCED MATERIALS AND ENGINEERING MATERIALS, PTS 1 AND 2, 2012, 457-458 :274-+
[28]   Fast Empirical Mode Decomposition based on Gaussian Noises [J].
Wang, Risheng ;
Zhou, Jianjun ;
Chen, Jie ;
Wang, Yanjie .
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI 2016), 2016, :282-288
[29]   HURST EXPONENT ESTIMATION FOR SHORT-TIME SERIES BASED ON SINGULAR VALUE DECOMPOSITION ENTROPY [J].
Alvarez-Ramirez, J. ;
Rodriguez, E. ;
Castro, L. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
[30]   Fractional gaussian noise: Spectral density and estimation methods [J].
Shi, Shuping ;
Yu, Jun ;
Zhang, Chen .
JOURNAL OF TIME SERIES ANALYSIS, 2024,