Key Transitions in the Evolution of Rapid and Slow Growing Mycobacteria Identified by Comparative Genomics

被引:23
作者
Bachmann, Nathan L. [1 ,2 ,3 ]
Salamzade, Rauf [4 ]
Manson, Abigail L. [4 ]
Whittington, Richard [2 ,3 ,5 ]
Sintchenko, Vitali [1 ,2 ,3 ]
Earl, Ashlee M. [4 ]
Marais, Ben J. [2 ,3 ]
机构
[1] Inst Clin Pathol & Med Res Pathol West, Ctr Infect Dis & Microbiol Lab Serv, NSW Mycobacterium Reference Lab, Sydney, NSW, Australia
[2] Univ Sydney, Ctr Res Excellence TB, Sydney, NSW, Australia
[3] Univ Sydney, Marie Bashir Inst Infect Dis & Biosecur, Sydney, NSW, Australia
[4] Broad Inst Harvard & MIT, Cambridge, MA USA
[5] Univ Sydney, Sydney Sch Vet Sci, Camden, NSW, Australia
基金
美国国家卫生研究院; 澳大利亚国家健康与医学研究理事会;
关键词
Mycobacterium species; growth phenotype; evolution; comparative genomics; phylogenetic analysis; PHYLOGENETIC ANALYSIS; GENUS MYCOBACTERIUM; TERRAE COMPLEX; SP NOV; SEQUENCE; TUBERCULOSIS;
D O I
10.3389/fmicb.2019.03019
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mycobacteria have been classified into rapid and slow growing phenotypes, but the genetic factors that underlie these growth rate differences are not well understood. We compared the genomes of 157 mycobacterial species, representing all major branches of the mycobacterial phylogenetic tree to identify genes and operons enriched among rapid and slow growing mycobacteria. Overlaying growth phenotype on a phylogenetic tree based on 304 core genes suggested that ancestral mycobacteria had a rapid growth phenotype with a single major evolutionary separation into rapid and slow growing sub-genera. We identified 293 genes enriched among rapid growing sub-genera, including genes encoding for amino acid transport/metabolism (e.g., livFGMH operon) and transcription, as well as novel ABC transporters. Loss of the livFGMH and ABC transporter operons among slow growing species suggests that reduced cellular amino acid transport may be growth limiting. Comparative genomic analysis suggests that horizontal gene transfer, from non-mycobacterial genera, may have contributed to niche adaptation and pathogenicity, especially among slow growing species. Interestingly, the mammalian cell entry (mce) operon was found to be ubiquitous, irrespective of growth phenotype or pathogenicity, although protein sequence homology between rapid and slow growing species was low (<50%). This suggests that the mce operon was present in ancestral rapid growing species, but later adapted by slow growing species for use as a mechanism to establish an intra-cellular lifestyle.
引用
收藏
页数:12
相关论文
共 43 条
[21]   Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling [J].
Kumar, A ;
Chandolia, A ;
Chaudhry, U ;
Brahmachari, V ;
Bose, M .
FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY, 2005, 43 (02) :185-195
[22]   Interactive Tree Of Life (iTOL) v4: recent updates and new developments [J].
Letunic, Ivica ;
Bork, Peer .
NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) :W256-W259
[23]   Evolution and Ecology of Actinobacteria and Their Bioenergy Applications [J].
Lewin, Gina R. ;
Carlos, Camila ;
Chevrette, Marc G. ;
Horn, Heidi A. ;
McDonald, Bradon R. ;
Stankey, Robert J. ;
Fox, Brian G. ;
Currie, Cameron R. .
ANNUAL REVIEW OF MICROBIOLOGY, VOL 70, 2016, 70 :235-+
[24]   Mycobacterium abscessus: a new player in the mycobacterial field [J].
Medjahed, Halima ;
Gaillard, Jean-Louis ;
Reyrat, Jean-Marc .
TRENDS IN MICROBIOLOGY, 2010, 18 (03) :117-123
[25]   Comparative genomic and phylogeographic analysis of Mycobacterium leprae [J].
Monot, Marc ;
Honore, Nadine ;
Garnier, Thierry ;
Zidane, Nora ;
Sherafi, Diana ;
Paniz-Mondolfi, Alberto ;
Matsuoka, Masanori ;
Taylor, G. Michael ;
Donoghue, Helen D. ;
Bouwman, Abi ;
Mays, Simon ;
Watson, Claire ;
Lockwood, Diana ;
Khamispour, Ali ;
Dowlati, Yahya ;
Shen Jianping ;
Rea, Thomas H. ;
Vera-Cabrera, Lucio ;
Stefani, Mariane M. ;
Banu, Sayera ;
Macdonald, Murdo ;
Sapkota, Bishwa Raj ;
Spencer, John S. ;
Thomas, Jerome ;
Harshman, Keith ;
Singh, Pushpendra ;
Busso, Philippe ;
Gattiker, Alexandre ;
Rougemont, Jacques ;
Brennan, Patrick J. ;
Cole, Stewart T. .
NATURE GENETICS, 2009, 41 (12) :1282-U39
[26]   Treatment of Slowly Growing Mycobacteria [J].
Philley, Julie V. ;
Griffith, David E. .
CLINICS IN CHEST MEDICINE, 2015, 36 (01) :79-90
[27]   Mycobacterium algericum sp nov., a novel rapidly growing species related to the Mycobacterium terrae complex and associated with goat lung lesions [J].
Sahraoui, Naima ;
Ballif, Marie ;
Zelleg, Samir ;
Yousfi, Nadir ;
Ritter, Claudia ;
Friedel, Ute ;
Amstutz, Beat ;
Yala, Djamel ;
Boulahbal, Fadila ;
Guetarni, Djamel ;
Zinsstag, Jakob ;
Keller, Peter M. .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2011, 61 :1870-1874
[28]   Genome analysis reveals three genomospecies in Mycobacterium abscessus [J].
Sassi, Mohamed ;
Drancourt, Michel .
BMC GENOMICS, 2014, 15
[29]   Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections [J].
Schreiber, Henry L. ;
Conover, Matt S. ;
Chou, Wen-Chi ;
Hibbing, Michael E. ;
Manson, Abigail L. ;
Dodson, Karen W. ;
Hannan, Thomas J. ;
Roberts, Pacita L. ;
Stapleton, Ann E. ;
Hooton, Thomas M. ;
Livny, Jonathan ;
Earl, Ashlee M. ;
Hultgren, Scott J. .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (382)
[30]   ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection [J].
Simeone, Roxane ;
Bottai, Daria ;
Frigui, Wafa ;
Majlessi, Laleh ;
Brosch, Roland .
TUBERCULOSIS, 2015, 95 :S150-S154