Projective reduce order synchronization of fractional order chaotic systems with unknown parameters

被引:7
|
作者
Al-Sawalha, M. Mossa [1 ]
机构
[1] Univ Hail, Fac Sci, Math Dept, Hail, Saudi Arabia
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2017年 / 10卷 / 04期
关键词
Projective; reduce order synchronization; adaptive control; unknown parameters; Lyapunov stability theory; ADAPTIVE-CONTROL METHOD; ACTIVE CONTROL; SLIDING MODE; UNCERTAIN PARAMETERS; HYPERCHAOTIC SYSTEM; LOGISTIC MAP;
D O I
10.22436/jnsa.010.04.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, mainly concerns the adaptive projective reduce order synchronization behavior of uncertain chaotic system. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two chaotic and hyperchaotic systems asymptotically synchronized up to a desired identical and different scaling matrix. Numerical simulation results show that the proposed method is effective, convenient, and also faster for projective dual synchronization of chaotic and hyperchaotic systems. (C) 2017 All rights reserved.
引用
收藏
页码:2103 / 2114
页数:12
相关论文
共 50 条
  • [31] Adaptive Lag Generalized Projective Stochastic Perturbation Synchronization for Unknown Chaotic Systems with Different Order
    Tang, Yang
    Miao, Qingying
    Zhong, Huihuang
    Gu, Xiaojing
    Fang, Jian-an
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 6330 - 6335
  • [32] Adaptive added-order anti-synchronization of chaotic systems with fully unknown parameters
    Shi, Xue Rong
    Wang, Zuo Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) : 1711 - 1717
  • [33] Adaptive reduced-order anti-synchronization of chaotic systems with fully unknown parameters
    Al-sawalha, M. Mossa
    Noorani, M. S. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (10) : 3022 - 3034
  • [34] Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters
    Al-sawalha, M. Mossa
    Noorani, M. S. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1908 - 1920
  • [35] Synchronization of chaotic Arneodo system of incommensurate fractional order with unknown parameters using adaptive method
    Hajipour, Ahmad
    Aminabadi, Saeid Saeidi
    OPTIK, 2016, 127 (19): : 7704 - 7709
  • [36] A Novel Hybrid Function Projective Synchronization between Different Fractional-Order Chaotic Systems
    Zhou, Ping
    Yang, Xiao-You
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [37] Adaptive synchronization and anti-synchronization of fractional order chaotic optical systems with uncertain parameters
    Ababneh, O.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 23 (04): : 302 - 314
  • [38] Intelligent fractional-order control-based projective synchronization for chaotic optical systems
    Boubellouta, A.
    Boulkroune, A.
    SOFT COMPUTING, 2019, 23 (14) : 5367 - 5384
  • [39] Projective synchronization of different fractional-order chaotic systems with non-identical orders
    Si, Gangquan
    Sun, Zhiyong
    Zhang, Yanbin
    Chen, Wenquan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1761 - 1771
  • [40] Control of finite-time anti-synchronization for variable-order fractional chaotic systems with unknown parameters
    Li Zhang
    Chenglong Yu
    Tao Liu
    Nonlinear Dynamics, 2016, 86 : 1967 - 1980