Projective reduce order synchronization of fractional order chaotic systems with unknown parameters

被引:7
|
作者
Al-Sawalha, M. Mossa [1 ]
机构
[1] Univ Hail, Fac Sci, Math Dept, Hail, Saudi Arabia
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2017年 / 10卷 / 04期
关键词
Projective; reduce order synchronization; adaptive control; unknown parameters; Lyapunov stability theory; ADAPTIVE-CONTROL METHOD; ACTIVE CONTROL; SLIDING MODE; UNCERTAIN PARAMETERS; HYPERCHAOTIC SYSTEM; LOGISTIC MAP;
D O I
10.22436/jnsa.010.04.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, mainly concerns the adaptive projective reduce order synchronization behavior of uncertain chaotic system. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two chaotic and hyperchaotic systems asymptotically synchronized up to a desired identical and different scaling matrix. Numerical simulation results show that the proposed method is effective, convenient, and also faster for projective dual synchronization of chaotic and hyperchaotic systems. (C) 2017 All rights reserved.
引用
收藏
页码:2103 / 2114
页数:12
相关论文
共 50 条
  • [21] The adaptive synchronization of fractional-order Liu chaotic system with unknown parameters
    Nourian, Adeleh
    Balochian, Saeed
    PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (06): : 1401 - 1407
  • [22] Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems
    Jiang C.-M.
    Liu S.-T.
    Zhang F.-F.
    International Journal of Automation and Computing, 2018, 15 (05) : 603 - 615
  • [23] Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems
    Cui-Mei Jiang
    Shu-Tang Liu
    Fang-Fang Zhang
    International Journal of Automation and Computing, 2018, 15 (05) : 603 - 615
  • [24] Hybrid Projective Synchronization for Two Identical Fractional-Order Chaotic Systems
    Zhou, Ping
    Ding, Rui
    Cao, Yu-xia
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [25] Generalized binary function projective synchronization of chaotic systems with unknown parameters
    Li, Zhenbo
    Tang, Jiashi
    OPTIK, 2017, 137 : 101 - 107
  • [26] Anti-synchronization of fractional order chaotic and hyperchaotic systems with fully unknown parameters using modified adaptive control
    Al-Sawalha, M. Mossa
    Al-Sawalha, Ayman
    OPEN PHYSICS, 2016, 14 (01): : 304 - 313
  • [27] Adaptive Modified Hybrid Robust Projective Synchronization Between Identical and Nonidentical Fractional-Order Complex Chaotic Systems With Fully Unknown Parameters
    Delavari, Hadi
    Mohadeszadeh, Milad
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (04):
  • [28] Parameters identification and adaptive projective synchronization of chaotic systems with unknown parameters
    Hu Man-feng
    Xu Zhen-yuan
    Proceedings of 2006 Chinese Control and Decision Conference, 2006, : 62 - +
  • [29] Modified function projective lag synchronization in fractional-order chaotic (hyperchaotic) systems
    Luo Chao
    Wang Xingyuan
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (10) : 1498 - 1511
  • [30] Hybrid Synchronization of Fractional Order Chaotic Systems
    Liang, Xue-feng
    Yang, Li-xin
    Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), 2016, 77 : 117 - 120