Projective reduce order synchronization of fractional order chaotic systems with unknown parameters

被引:7
|
作者
Al-Sawalha, M. Mossa [1 ]
机构
[1] Univ Hail, Fac Sci, Math Dept, Hail, Saudi Arabia
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2017年 / 10卷 / 04期
关键词
Projective; reduce order synchronization; adaptive control; unknown parameters; Lyapunov stability theory; ADAPTIVE-CONTROL METHOD; ACTIVE CONTROL; SLIDING MODE; UNCERTAIN PARAMETERS; HYPERCHAOTIC SYSTEM; LOGISTIC MAP;
D O I
10.22436/jnsa.010.04.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, mainly concerns the adaptive projective reduce order synchronization behavior of uncertain chaotic system. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two chaotic and hyperchaotic systems asymptotically synchronized up to a desired identical and different scaling matrix. Numerical simulation results show that the proposed method is effective, convenient, and also faster for projective dual synchronization of chaotic and hyperchaotic systems. (C) 2017 All rights reserved.
引用
收藏
页码:2103 / 2114
页数:12
相关论文
共 50 条
  • [11] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    PHYSICS LETTERS A, 2011, 375 (21) : 2099 - 2110
  • [12] Adaptive function projective synchronization between different fractional-order chaotic systems
    Zhou, P.
    Ding, R.
    INDIAN JOURNAL OF PHYSICS, 2012, 86 (06) : 497 - 501
  • [13] Modified projective synchronization of uncertain fractional order hyperchaotic systems
    Bai, Jing
    Yu, Yongguang
    Wang, Sha
    Song, Yu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1921 - 1928
  • [14] Adaptive function projective synchronization between different fractional-order chaotic systems
    Ping Zhou
    Rui Ding
    Indian Journal of Physics, 2012, 86 : 497 - 501
  • [15] Adaptive modified function projective synchronization of unknown chaotic systems with different order
    Zheng, Song
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (10) : 5891 - 5899
  • [16] Reduced-order synchronization of fractional order chaotic systems with fully unknown parameters using modified adaptive control
    Al-Sawalha, M. Mossa
    Shoaib, M.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (04): : 1815 - 1825
  • [17] Full state hybrid projective synchronization of variable-order fractional chaotic/hyperchaotic systems with nonlinear external disturbances and unknown parameters
    Zhang, Li
    Liu, Tao
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1064 - 1076
  • [18] FUNCTION PROJECTIVE SYNCHRONIZATION OF THE CHAOTIC SYSTEMS WITH PARAMETERS UNKNOWN
    Zhao, Jiakun
    Wu, Ying
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (21):
  • [19] The adaptive synchronization of fractional-order Liu chaotic system with unknown parameters
    ADELEH NOURIAN
    SAEED BALOCHIAN
    Pramana, 2016, 86 : 1401 - 1407
  • [20] Hybrid projective synchronization of time-delayed fractional order chaotic systems
    Wang, Sha
    Yu, Yongguang
    Wen, Guoguang
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2014, 11 : 129 - 138