Projective reduce order synchronization of fractional order chaotic systems with unknown parameters

被引:7
作者
Al-Sawalha, M. Mossa [1 ]
机构
[1] Univ Hail, Fac Sci, Math Dept, Hail, Saudi Arabia
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2017年 / 10卷 / 04期
关键词
Projective; reduce order synchronization; adaptive control; unknown parameters; Lyapunov stability theory; ADAPTIVE-CONTROL METHOD; ACTIVE CONTROL; SLIDING MODE; UNCERTAIN PARAMETERS; HYPERCHAOTIC SYSTEM; LOGISTIC MAP;
D O I
10.22436/jnsa.010.04.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper, mainly concerns the adaptive projective reduce order synchronization behavior of uncertain chaotic system. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two chaotic and hyperchaotic systems asymptotically synchronized up to a desired identical and different scaling matrix. Numerical simulation results show that the proposed method is effective, convenient, and also faster for projective dual synchronization of chaotic and hyperchaotic systems. (C) 2017 All rights reserved.
引用
收藏
页码:2103 / 2114
页数:12
相关论文
共 34 条
[1]   Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method [J].
Agrawal, S. K. ;
Das, S. .
JOURNAL OF PROCESS CONTROL, 2014, 24 (05) :517-530
[2]   A modified adaptive control method for synchronization of some fractional chaotic systems with unknown parameters [J].
Agrawal, S. K. ;
Das, S. .
NONLINEAR DYNAMICS, 2013, 73 (1-2) :907-919
[3]   Synchronization of fractional order chaotic systems using active control method [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :737-752
[4]   The synchronization of chaotic systems with different dimensions by a robust generalized active control [J].
Ahmad, Israr ;
Bin Saaban, Azizan ;
Ibrahim, Adyda Binti ;
Shahzad, Mohammad ;
Naveed, Nawazish .
OPTIK, 2016, 127 (11) :4859-4871
[5]   Anti-synchronization of fractional order chaotic and hyperchaotic systems with fully unknown parameters using modified adaptive control [J].
Al-Sawalha, M. Mossa ;
Al-Sawalha, Ayman .
OPEN PHYSICS, 2016, 14 (01) :304-313
[6]   Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters [J].
Al-sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1908-1920
[7]  
[Anonymous], 2001, APPL FRACTIONAL CALC
[8]   Stability analysis of Caputo-like discrete fractional systems [J].
Baleanu, Dumitru ;
Wu, Guo-Cheng ;
Bai, Yun-Ru ;
Chen, Fu-Lai .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :520-530
[9]   Synchronization of different fractional order chaotic systems using active control [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3536-3546
[10]   Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control [J].
Bouzeriba, A. ;
Boulkroune, A. ;
Bouden, T. .
NEURAL COMPUTING & APPLICATIONS, 2016, 27 (05) :1349-1360