Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates

被引:50
作者
Beltrame, Philippe [1 ]
Knobloch, Edgar [2 ]
Haenggi, Peter [3 ]
Thiele, Uwe [4 ]
机构
[1] Univ Avignon, UMR EmmaH 1114, Dept Phys, F-84000 Avignon, France
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[4] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 01期
基金
美国国家科学基金会;
关键词
CONTACT-ANGLE HYSTERESIS; RIVULET INSTABILITIES; PATTERN-FORMATION; SADDLE-NODE; LINE; DYNAMICS; DROPS; FILM; STABILITY; SURFACES;
D O I
10.1103/PhysRevE.83.016305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Depinning of two-dimensional liquid ridges and three-dimensional drops on an inclined substrate is studied within the lubrication approximation. The structures are pinned to wetting heterogeneities arising from variations of the strength of the short-range contribution to the disjoining pressure. The case of a periodic array of hydrophobic stripes transverse to the slope is studied in detail using a combination of direct numerical simulation and branch-following techniques. Under appropriate conditions the ridges may either depin and slide downslope as the slope is increased, or first break up into drops via a transverse instability, prior to depinning. The different transition scenarios are examined together with the stability properties of the different possible states of the system.
引用
收藏
页数:21
相关论文
共 89 条
  • [1] [Anonymous], 1994, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, DOI 9780738204536
  • [2] [Anonymous], 1999, FIELDS I COMMUN
  • [3] ASYMPTOTIC CHAOS
    ARNEODO, A
    COULLET, PH
    SPIEGEL, EA
    TRESSER, C
    [J]. PHYSICA D, 1985, 14 (03): : 327 - 347
  • [4] Two-state intermittency near a symmetric interaction of saddle-node and Hopf bifurcations: a case study from dynamo theory
    Ashwin, P
    Rucklidge, AM
    Sturman, R
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) : 30 - 48
  • [5] The thin-film equation:: recent advances and some new perspectives
    Becker, J
    Grün, G
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (09) : S291 - S307
  • [6] Complex dewetting scenarios captured by thin-film models
    Becker, J
    Grün, G
    Seemann, R
    Mantz, H
    Jacobs, K
    Mecke, KR
    Blossey, R
    [J]. NATURE MATERIALS, 2003, 2 (01) : 59 - 63
  • [7] Depinning of three-dimensional drops from wettability defects
    Beltrame, Ph.
    Haenggi, P.
    Thiele, U.
    [J]. EPL, 2009, 86 (02)
  • [8] Time Integration and Steady-State Continuation for 2d Lubrication Equations
    Beltrame, Philippe
    Thiele, Uwe
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (02): : 484 - 518
  • [9] Dewetting films:: bifurcations and concentrations
    Bertozzi, AL
    Grün, G
    Witelski, TP
    [J]. NONLINEARITY, 2001, 14 (06) : 1569 - 1592
  • [10] Wetting morphologies on substrates with striped surface domains
    Brinkmann, M
    Lipowsky, R
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 92 (08) : 4296 - 4306