Superstretchable Elastomer from Cross-linked Ring Polymers

被引:24
作者
Wang, Jiuling [1 ]
O'Connor, Thomas C. [2 ]
Grest, Gary S. [3 ]
Ge, Ting [1 ]
机构
[1] Univ South Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[2] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
MELTS; CONFORMATIONS; RELAXATION; SUPERSOFT; RHEOLOGY; DYNAMICS;
D O I
10.1103/PhysRevLett.128.237801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stretchability of polymeric materials is critical to many applications such as flexible electronics and soft robotics, yet the stretchability of conventional cross-linked linear polymers is limited by the entanglements between polymer chains. We show using molecular dynamics simulations that cross-linked ring polymers are significantly more stretchable than cross-linked linear polymers. Compared to linear polymers, the entanglements between ring polymers do not act as effective cross-links. As a result, the stretchability of cross-linked ring polymers is determined by the maximum extension of polymer strands between cross-links, rather than between trapped entanglements as in cross-linked linear polymers. The more compact conformation of ring polymers before deformation also contributes to the increase in stretchability.
引用
收藏
页数:6
相关论文
共 52 条
[1]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[2]  
[Anonymous], SUPERSTRETCHABLE ELA, DOI [10.1103/PhysRevLett.128.237801, DOI 10.1103/PHYSREVLETT.128.237801]
[3]   Fracture of model end-linked networks [J].
Barney, Christopher W. ;
Ye, Ziyu ;
Sacligil, Ipek ;
McLeod, Kelly R. ;
Zhang, Han ;
Tew, Gregory N. ;
Riggleman, Robert A. ;
Crosby, Alfred J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (07)
[4]   Soft Poly(dimethylsiloxane) Elastomers from Architecture-Driven Entanglement Free Design [J].
Cai, Li-Heng ;
Kodger, Thomas E. ;
Guerra, Rodrigo E. ;
Pegoraro, Adrian F. ;
Rubinstein, Michael ;
Weitz, David A. .
ADVANCED MATERIALS, 2015, 27 (35) :5132-5140
[5]   Computer Simulations of Bottle Brushes: From Melts to Soft Networks [J].
Cao, Zhen ;
Carrillo, Jan-Michael Y. ;
Sheiko, Sergei S. ;
Dobrynin, Andrey V. .
MACROMOLECULES, 2015, 48 (14) :5006-5015
[6]  
Daniel WFM, 2016, NAT MATER, V15, P183, DOI [10.1038/nmat4508, 10.1038/NMAT4508]
[7]   STRUCTURE AND RELAXATION OF END-LINKED POLYMER NETWORKS [J].
DUERING, ER ;
KREMER, K ;
GREST, GS .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (09) :8169-8192
[8]   Rheology and microscopic topology of entangled polymeric liquids [J].
Everaers, R ;
Sukumaran, SK ;
Grest, GS ;
Svaneborg, C ;
Sivasubramanian, A ;
Kremer, K .
SCIENCE, 2004, 303 (5659) :823-826
[9]   Cyclic Poly(phthalaldehyde): Thermoforming a Bulk Transient Material [J].
Feinberg, Adam M. ;
Hernandez, Hector Lopez ;
Plantz, Christopher L. ;
Mejia, Edgar B. ;
Sottos, Nancy R. ;
White, Scott R. ;
Moore, Jeffrey S. .
ACS MACRO LETTERS, 2018, 7 (01) :47-52
[10]   Self-Similar Conformations and Dynamics in Entangled Melts and Solutions of Nonconcatenated Ring Polymers [J].
Ge, Ting ;
Panyukoy, Sergey ;
Rubinstein, Michael .
MACROMOLECULES, 2016, 49 (02) :708-722