On the minimum eccentricity shortest path problem

被引:7
|
作者
Dragan, Feodor F. [1 ]
Leitert, Arne [1 ]
机构
[1] Kent State Univ, Dept Comp Sci, Kent, OH 44240 USA
关键词
Graph algorithms; Approximation algorithms; Minimum eccentricity shortest path; Minimum distortion embedding into the line; k-Dominating set; NP-complete and W[2]-hard problems; DISTORTION; BANDWIDTH;
D O I
10.1016/j.tcs.2017.07.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce and investigate the Minimum Eccentricity Shortest Path (MESP) problem in unweighted graphs. It asks for a given graph to find a shortest path with minimum eccentricity. Let n and m denote the number of vertices and the number of edges of a given graph. We demonstrate that: a minimum eccentricity shortest path plays a crucial role in obtaining the best to date approximation algorithm for a minimum distortion embedding of a graph into the line; the MESP problem is NP-hard for planar bipartite graphs with maximum degree 3 and W[2]-hard for general graphs; a shortest path of minimum eccentricity k can be computed in O(n(2k+2)m) time; a 2-approximation, a 3-approximation, and an 8-approximation for the MESP problem can be computed in O(n(3)) time, in O(nm) time, and in O(m) time, respectively; in a graph with a shortest path of eccentricity k, a k-dominating set can be found in n(O(k)) time. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 78
页数:13
相关论文
共 50 条
  • [1] Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters
    Kucera, Martin
    Suchy, Ondrej
    ALGORITHMICA, 2023, 85 (03) : 762 - 782
  • [2] Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters
    Martin Kučera
    Ondřej Suchý
    Algorithmica, 2023, 85 : 762 - 782
  • [3] Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters
    Kucera, Martin
    Suchy, Ondrej
    COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 442 - 455
  • [4] Parameterized Algorithms for Eccentricity Shortest Path Problem
    Bhyravarapu, Sriram
    Jana, Satyabrata
    Kanesh, Lawqueen
    Saurabh, Saket
    Verma, Shaily
    COMBINATORIAL ALGORITHMS, IWOCA 2023, 2023, 13889 : 74 - 86
  • [5] THE MINIMUM-COVERING SHORTEST-PATH PROBLEM
    CURRENT, J
    REVELLE, C
    COHON, J
    DECISION SCIENCES, 1988, 19 (03) : 490 - 503
  • [6] On the approximability of the minimum congestion unsplittable shortest path routing problem
    Bley, A
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2005, 3509 : 97 - 110
  • [7] Shortest conditional decreasing path algorithm for the parametric minimum flow problem
    Ciurea, Eleonor
    Parpalea, Mircea
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (04): : 387 - 401
  • [8] The Restricted Minimum Single Source Shortest Path Tree Expansion Problem
    Wang, Haiyan
    Deng, Weiqi
    Huang, Binchao
    Li, Jianping
    2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017), 2017, : 63 - 68
  • [9] A Shortest Path Problem
    JIA Zhengsheng(Mathematics and Mechanics Department of Taiyuan University of technology Taiyuan 030024)FAN Hui(Foundation Department Shan Xi Mining Industry institute
    JournalofSystemsScienceandSystemsEngineering, 1996, (04) : 496 - 499
  • [10] The cable trench problem: combining the shortest path and minimum spanning tree problems
    Vasko, FJ
    Barbieri, RS
    Rieksts, BQ
    Reitmeyer, KL
    Stott, KL
    COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (05) : 441 - 458