A Faster Pseudopolynomial Time Algorithm for Subset Sum

被引:0
作者
Koiliaris, Konstantinos [1 ]
Xu, Chao [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, 1304 W Springfield Ave, Urbana, IL 61801 USA
来源
PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS | 2017年
关键词
GRAPH PARTITION PROBLEM; KNAPSACK-PROBLEM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a multiset S of n positive integers and a target integer t, the subset sum problem is to decide if there is a subset of S that sums up to t. We present a new divide-and-conquer algorithm that computes all the realizable subset sums up to an integer u in (O) over tilde (min{root nu, u(4/3), sigma}), where a is the sum of all elements in S and (O) over tilde hides polylogarithmic factors. This result improves upon the standard dynamic programming algorithm that runs in O(nu) time. To the best of our knowledge, the new algorithm is the fastest general deterministic algorithm for this problem. We also present a modified algorithm for finite cyclic groups, which computes all the realizable subset sums within the group in (O) over tilde (min{root nm, m(5/4)}) time, where m is the order of the group.
引用
收藏
页码:1062 / 1072
页数:11
相关论文
共 45 条
[1]  
[Anonymous], OXFORD SCI PUBLICATI
[2]  
[Anonymous], 2004, Knapsack Problems, DOI DOI 10.1007/978-3-540-24777-710
[3]   Finding Witnesses by Peeling [J].
Aumann, Yonatan ;
Lewenstein, Moshe ;
Lewenstein, Noa ;
Tsur, Dekel .
ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (02)
[4]  
Bellman R., 1956, NAVAL RES LOGIST Q, V3, P67, DOI DOI 10.1002/NAV.3800030107
[5]  
Blahut R.E., 1985, FAST ALGORITHMS DIGI
[6]  
Bringmann Karl, 2017, SODA 17 IN PRESS
[7]  
Cai Leizhen, 2006, RANDOM SEPARATION NE, P239, DOI DOI 10.1007/11847250_22
[8]  
Caro Y, 1998, J GRAPH THEOR, V29, P151, DOI 10.1002/(SICI)1097-0118(199811)29:3<151::AID-JGT3>3.0.CO
[9]  
2-P
[10]  
Chaimovich M, 1999, ASTERISQUE, P363