Lower bound for the Erdos-Burgess constant of finite commutative rings

被引:0
作者
Wang, Guoqing [1 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 05期
关键词
Erdos-Burgess constant; Davenport constant; zero-sum; idempotent-product free sequences; finite commutative rings; DAVENPORT CONSTANT; MULTIPLICATIVE SEMIGROUP; SEQUENCES;
D O I
10.3934/math.2020282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a finite commutative unitary ring. An idempotent in R is an element e is an element of R with e(2) = e. The Erdos-Burgess constant associated with the ring R is the smallest positive integer l such that for any given l elements (repetitions are allowed) of R, say a(1), ..., a(l) is an element of R, there must exist a nonempty subset a(1), ..., a(l) is an element of R l) with J subset of {1, 2, ..., l} with Pi(j is an element of J )a(j) being an idempotent. In this paper, we give a lower bound of the Erdos-Burgess constant in a finite commutative unitary ring in terms of all its maximal ideals, and prove that the lower bound is attained in some cases. The result unifies some recently obtained theorems on this invariant.
引用
收藏
页码:4424 / 4431
页数:8
相关论文
共 18 条
[1]  
Burgess D.A., 1969, STUD SCI MATH HUNG, V4, P9
[2]   Davenport constant for commutative rings [J].
Deng, Calvin .
JOURNAL OF NUMBER THEORY, 2017, 172 :321-342
[3]   Zero-sum problems in finite abelian groups: A survey [J].
Gao, Weidong ;
Geroldinger, Alfred .
EXPOSITIONES MATHEMATICAE, 2006, 24 (04) :337-369
[4]   An upper bound for the Davenport constant of finite groups [J].
Gao, Weidong ;
Li, Yuanlin ;
Peng, Jiangtao .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (10) :1838-1844
[5]   The large Davenport constant I: Groups with a cyclic, index 2 subgroup [J].
Geroldinger, Alfred ;
Grynkiewicz, David J. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (05) :863-885
[6]   On the Davenport constant and on the structure of extremal zero-sum free sequences [J].
Geroldinger, Alfred ;
Liebmann, Manfred ;
Philipp, Andreas .
PERIODICA MATHEMATICA HUNGARICA, 2012, 64 (02) :213-225
[7]  
GILLAM D. W. H, 1972, B LOND MATH SOC, V4, P143
[8]  
Grillet P. A., 2001, Commutative Semigroups
[9]  
Hao J., 2019, OPEN J DISCRETE MATH, V9, P11
[10]   A stronger connection between the Erdos-Burgess and Davenport constants [J].
Kravitz, Noah ;
Sah, Ashwin .
JOURNAL OF NUMBER THEORY, 2020, 210 :373-388