Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes

被引:20
作者
Wu, LM [1 ]
机构
[1] Univ Blaise Pascal, Lab Math Appl, CNRS, UMR 6620, F-63177 Aubiere, France
[2] Wuhan Univ, Dept Math, Wuhan 430072, Hubei, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 1999年 / 35卷 / 02期
关键词
forward-backward martingale decomposition; the functional central limit theorem or Donsker's invariance principle; the functional law of iterated logarithm or; Strassen's strong invariance principle;
D O I
10.1016/S0246-0203(99)80008-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the forward-backward martingale decomposition of Meyer-Zheng-Lyons's type from the symmetric case to the general stationary situation for the partial sum S.(f) with f satisfying a finite energy condition. As corollaries we obtain easily a maximal inequality and a tightness result related to Donsker's invariance principle, and especially a criterion of a.s. compactness related to Strassen's strong invariance principle. (C) Elsevier, Paris.
引用
收藏
页码:121 / 141
页数:21
相关论文
共 13 条
[1]  
[Anonymous], LECT NOTES MATH
[2]   MODERATE DEVIATIONS FOR MARTINGALES WITH BOUNDED JUMPS [J].
Dembo, A. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1996, 1 :11-17
[3]  
Deuschel J.-D., 1989, PURE APPL MATH, V137
[4]  
GOLDSTEIN S, 1995, ANN I H POINCARE-PR, V31, P177
[5]  
Hall P., 1980, PROBABILITY MATH STA
[6]  
Kato T., 1984, PERTURBATION THEORY
[7]   CENTRAL-LIMIT-THEOREM FOR ADDITIVE-FUNCTIONALS OF REVERSIBLE MARKOV-PROCESSES AND APPLICATIONS TO SIMPLE EXCLUSIONS [J].
KIPNIS, C ;
VARADHAN, SRS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (01) :1-19
[8]  
LYONS TJ, 1988, ASTERISQUE, P249
[9]  
Ma Z. M., 1992, INTRO THEORY NONSYMM
[10]   AN INVARIANCE-PRINCIPLE FOR NONSYMMETRICAL MARKOV-PROCESSES AND REFLECTING DIFFUSIONS IN RANDOM DOMAINS [J].
OSADA, H ;
SAITOH, T .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (01) :45-63