Singular Ricci flows I

被引:39
作者
Kleiner, Bruce [1 ]
Lott, John [2 ]
机构
[1] Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
MEAN-CURVATURE FLOW; HARMONIC MAPS; PARTIAL REGULARITY; REDUCED VOLUME; LEVEL SETS; EXISTENCE; SURFACES; MOTION; 2-ORBIFOLDS; 4-MANIFOLDS;
D O I
10.4310/ACTA.2017.v219.n1.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce singular Ricci flows, which are Ricci flow spacetimes subject to certain asymptotic conditions. These provide a solution to the long-standing problem of finding a good notion of Ricci flow through singularities, in the 3-dimensional case. We prove that Ricci flow with surgery, starting from a fixed initial condition, subconverges to a singular Ricci flow as the surgery parameter tends to zero. We establish a number of geometric and analytical properties of singular Ricci flows. © 2017 by Institut Mittag-Leffler. All rights reserved.
引用
收藏
页码:65 / 134
页数:70
相关论文
共 82 条
[41]  
Haslhofer R., J EUR MATH IN PRESS
[42]   MEAN CURVATURE FLOW WITH SURGERY [J].
Haslhofer, Robert ;
Kleiner, Bruce .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (09) :1591-1626
[43]  
Head J, 2013, J DIFFER GEOM, V94, P241
[44]   REGULARITY OF WEAKLY HARMONIC MAPS FROM A SURFACE INTO A MANIFOLD WITH SYMMETRIES [J].
HELEIN, F .
MANUSCRIPTA MATHEMATICA, 1991, 70 (02) :203-218
[45]  
HUISKEN G, 1990, J DIFFER GEOM, V31, P285
[46]  
ILMANEN T, 1994, MEM AM MATH SOC, V108, pR3
[47]  
Kleiner B, 2014, ASTERISQUE, P101
[48]   Notes on Perelman's papers [J].
Kleiner, Bruce ;
Lott, John .
GEOMETRY & TOPOLOGY, 2008, 12 :2587-2855
[49]  
Koch H, 2012, ASIAN J MATH, V16, P209
[50]  
Lauer J, 2013, COMMUN ANAL GEOM, V21, P355