Singular Ricci flows I

被引:39
作者
Kleiner, Bruce [1 ]
Lott, John [2 ]
机构
[1] Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
MEAN-CURVATURE FLOW; HARMONIC MAPS; PARTIAL REGULARITY; REDUCED VOLUME; LEVEL SETS; EXISTENCE; SURFACES; MOTION; 2-ORBIFOLDS; 4-MANIFOLDS;
D O I
10.4310/ACTA.2017.v219.n1.a4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce singular Ricci flows, which are Ricci flow spacetimes subject to certain asymptotic conditions. These provide a solution to the long-standing problem of finding a good notion of Ricci flow through singularities, in the 3-dimensional case. We prove that Ricci flow with surgery, starting from a fixed initial condition, subconverges to a singular Ricci flow as the surgery parameter tends to zero. We establish a number of geometric and analytical properties of singular Ricci flows. © 2017 by Institut Mittag-Leffler. All rights reserved.
引用
收藏
页码:65 / 134
页数:70
相关论文
共 82 条
[1]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[3]  
Angenent SB, 2007, COMMUN ANAL GEOM, V15, P773
[4]   Minimally invasive surgery for Ricci flow singularities [J].
Angenent, Sigurd B. ;
Caputo, M. Cristina ;
Knopf, Dan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 672 :39-87
[5]  
[Anonymous], 2003, RICCI FLOW SURGERY 3
[6]  
[Anonymous], 1960, SEM MAT SC NORM SUP
[7]  
[Anonymous], ARXIVMATH0211159
[8]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[9]  
[Anonymous], 2013, ARXIV13054355
[10]  
[Anonymous], 1984, Ann. Scuola Norm. Sup. Pisa Cl. Sci