Multisensory collaborative damage diagnosis of a 10 MW floating offshore wind turbine tendons using multi-scale convolutional neural network with attention mechanism
被引:13
|
作者:
Xu, Zifei
论文数: 0引用数: 0
h-index: 0
机构:
Liverpool John Moores Univ, Offshore & Marine LOOM Res Inst, Sch Engn, Liverpool Logist, Byrom St, Liverpool L3 3AF, Merseyside, England
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaLiverpool John Moores Univ, Offshore & Marine LOOM Res Inst, Sch Engn, Liverpool Logist, Byrom St, Liverpool L3 3AF, Merseyside, England
Xu, Zifei
[1
,2
]
Bashir, Musa
论文数: 0引用数: 0
h-index: 0
机构:
Liverpool John Moores Univ, Offshore & Marine LOOM Res Inst, Sch Engn, Liverpool Logist, Byrom St, Liverpool L3 3AF, Merseyside, EnglandLiverpool John Moores Univ, Offshore & Marine LOOM Res Inst, Sch Engn, Liverpool Logist, Byrom St, Liverpool L3 3AF, Merseyside, England
Bashir, Musa
[1
]
Yang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Peoples R ChinaLiverpool John Moores Univ, Offshore & Marine LOOM Res Inst, Sch Engn, Liverpool Logist, Byrom St, Liverpool L3 3AF, Merseyside, England
Yang, Yang
[3
]
论文数: 引用数:
h-index:
机构:
Wang, Xinyu
[2
]
论文数: 引用数:
h-index:
机构:
Wang, Jin
[1
]
论文数: 引用数:
h-index:
机构:
Ekere, Nduka
[1
]
Li, Chun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaLiverpool John Moores Univ, Offshore & Marine LOOM Res Inst, Sch Engn, Liverpool Logist, Byrom St, Liverpool L3 3AF, Merseyside, England
Li, Chun
[2
]
机构:
[1] Liverpool John Moores Univ, Offshore & Marine LOOM Res Inst, Sch Engn, Liverpool Logist, Byrom St, Liverpool L3 3AF, Merseyside, England
[2] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
[3] Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Peoples R China
FOWT;
Deep learning;
Structural health monitoring;
Damage diagnosis;
Multisensory;
Maintenance;
FAULT-DIAGNOSIS;
MODEL;
D O I:
10.1016/j.renene.2022.08.093
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
An effective damage diagnosis and prognostic management method can considerably reduce operation and maintenance costs of floating wind turbines. In this research, an intelligent damage diagnosis framework, named "MS-ACNN", has been developed using a multi-scale deep convolution neural network model fused with an attention mechanism. The framework is used to detect, localize, and quantify existing and potential damages on multibody floating wind turbine tendons. The MS-ACNN framework is fitted with two multi-scale extractors, designed to capture multi-scale information from raw wind turbine response signals measured using multi -sensor. The attention mechanism uses weight ratios of extracted damage feature to enhance the MS-ACNN's capability in offering a better generalization in damage diagnosis. The framework's performance is examined under normal and noisy environments and with a diagnosis accuracy of 80%, which is higher than those obtained using most generic industrial grade diagnostic tools (MS-CNN-I, MSCNN-II, CNN, CNN-LSTM and CNN-BiLSTM) by at least 10%. The framework is also fitted with a Majority Weighted Voting rule to reduce false alarms and ensure optimum performance of the multi-sensor during collaborative diagnosis. Further examination shows that the inclusion of a voting rule increases the diagnostic performance's F1 index from 90% for single sensor and 84% for multi-sensor results to 94%.
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Liverpool John Moores Univ, Dept Maritime & Mech Engn, Byrom St, Liverpool L3 3AF, Merseyside, EnglandUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Xu, Zifei
Li, Chun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Li, Chun
Yang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Liverpool John Moores Univ, Dept Maritime & Mech Engn, Byrom St, Liverpool L3 3AF, Merseyside, EnglandUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
机构:
School of Electrical and Information Engineering, Jiangsu University, ZhenjiangSchool of Electrical and Information Engineering, Jiangsu University, Zhenjiang
Wang, Zhaowei
Liu, Chuanshuai
论文数: 0引用数: 0
h-index: 0
机构:
School of Electrical and Information Engineering, Jiangsu University, ZhenjiangSchool of Electrical and Information Engineering, Jiangsu University, Zhenjiang
Liu, Chuanshuai
Zhao, Wenxiang
论文数: 0引用数: 0
h-index: 0
机构:
School of Electrical and Information Engineering, Jiangsu University, ZhenjiangSchool of Electrical and Information Engineering, Jiangsu University, Zhenjiang
Zhao, Wenxiang
Song, Xiangjin
论文数: 0引用数: 0
h-index: 0
机构:
School of Electrical and Information Engineering, Jiangsu University, ZhenjiangSchool of Electrical and Information Engineering, Jiangsu University, Zhenjiang
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Liverpool John Moores Univ, Dept Maritime & Mech Engn, Byrom St, Liverpool L3 3AF, Merseyside, EnglandUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Xu, Zifei
Mei, Xuan
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Dept Civil Engn, Shanghai 200092, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Mei, Xuan
Wang, Xinyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Wang, Xinyu
Yue, Minnan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Yue, Minnan
Jin, Jiangtao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Jin, Jiangtao
Yang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Yang, Yang
Li, Chun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
机构:
Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R ChinaZhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R China
Wang, Yan
Liang, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R ChinaZhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R China
Liang, Jie
Gu, Xiaoguang
论文数: 0引用数: 0
h-index: 0
机构:
Henan Big Data Ctr, Dept Appl Res, 39 Jinshui East Rd, Zhengzhou 45003, Peoples R ChinaZhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R China
Gu, Xiaoguang
Ling, Dan
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R ChinaZhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R China
Ling, Dan
Yu, Haowen
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R ChinaZhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou, Peoples R China