A proof of Choffrut's theorem on subsequential functions

被引:6
作者
Bruyère, V
Reutenauer, C
机构
[1] Dept Math, Montreal, PQ H3C 3P8, Canada
[2] Univ Mons, B-7000 Mons, Belgium
[3] Univ Quebec, Montreal, PQ H3C 3P8, Canada
关键词
subsequential; machine; rational;
D O I
10.1016/S0304-3975(98)00163-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove an extension of the Ginsburg-Rose theorem, and as a corollary, Choffrut's topological characterization of subsequential functions. (C) 1999-Elsevier Science B.V. All rights reserved.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 8 条
[1]  
Berstel J., 1979, TEUBNER STUDIENBUCHE, V38
[2]   The suffix tree of a tree and minimizing sequential transducers [J].
Breslauer, D .
THEORETICAL COMPUTER SCIENCE, 1998, 191 (1-2) :131-144
[3]  
David B., 1992, WORD PROCESSING GROU
[4]  
Eilenberg S., 1974, AUTOMATA LANGUAGES M, VA
[5]  
MOHRI M, 1998, IN PRESS THEORET COM
[6]   MINIMIZATION OF RATIONAL WORD FUNCTIONS [J].
REUTENAUER, C ;
SCHUTZENBERGER, MP .
SIAM JOURNAL ON COMPUTING, 1991, 20 (04) :669-685
[7]  
REUTENAUER C, 1990, LECT NOTES COMPUT SC, V464, P62
[8]  
[No title captured]