UNCONDITIONALLY BOUND PRESERVING AND ENERGY DISSIPATIVE SCHEMES FOR A CLASS OF KELLER-SEGEL EQUATIONS

被引:33
|
作者
Shen, Jie [1 ]
Xu, Jie [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci AMSS, LSEC & NCMIS, Inst Computat Math & Sci Engn Comp ICMSEC, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Keller-Segel equations; chamotaxis; gradient flows; bound preserving; energy stability; POINT DYNAMICS; SINGULAR LIMIT; CHEMOTAXIS; MODEL;
D O I
10.1137/19M1246705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose numerical schemes for a class of Keller-Segel equations. The discretization is based on the gradient flow structure. The resulting first-order scheme is mass conservative, bound preserving, uniquely solvable, and energy dissipative, and the second-order scheme satisfies the first three properties. For parabolic-elliptic equations, the schemes are decoupled. Numerical examples are presented to show that besides the above properties, the schemes are efficient and able to capture the spiky solutions for the aggregation in chemotaxis.
引用
收藏
页码:1674 / 1695
页数:22
相关论文
共 50 条
  • [11] Bound/positivity preserving and unconditionally stable schemes for a class of fourth order nonlinear equations
    Huang, Fukeng
    Shen, Jie
    Wu, Ke
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 460
  • [12] ENERGY AND IMPLICIT DISCRETIZATION OF THE FOKKER-PLANCK AND KELLER-SEGEL TYPE EQUATIONS
    Almeida, Luis
    Bubba, Federica
    Perthame, Benoit
    Pouchol, Camille
    NETWORKS AND HETEROGENEOUS MEDIA, 2019, 14 (01) : 23 - 41
  • [13] A Note on L∞-Bound and Uniqueness to a Degenerate Keller-Segel Model
    Liu, Jian-Guo
    Wang, Jinhuan
    ACTA APPLICANDAE MATHEMATICAE, 2016, 142 (01) : 173 - 188
  • [14] BOUNDEDNESS AND HOMOGENEOUS ASYMPTOTICS FOR A FRACTIONAL LOGISTIC KELLER-SEGEL EQUATIONS
    Burczak, Jan
    Granero-Belinchon, Rafael
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02): : 139 - 164
  • [15] Refined hyper-contractivity and uniqueness for the Keller-Segel equations
    Liu, Jian-Guo
    Wang, Jinhuan
    APPLIED MATHEMATICS LETTERS, 2016, 52 : 212 - 219
  • [16] On the Fractional View Analysis of Keller-Segel Equations with Sensitivity Functions
    Liu, Haobin
    Khan, Hassan
    Shah, Rasool
    Alderremy, A. A.
    Aly, Shaban
    Baleanu, Dumitru
    COMPLEXITY, 2020, 2020 (2020)
  • [17] On a class of Keller-Segel chemotaxis systems with cross-diffusion
    Xiang, Tian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 4273 - 4326
  • [18] Bound/positivity preserving SAV schemes for the Patlak-Keller-Segel-Navier-Stokes system
    Huang, Xueling
    Shen, Jie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 480
  • [19] A QUANTUM APPROACH TO KELLER-SEGEL DYNAMICS VIA A DISSIPATIVE NONLINEAR SCHRODINGER EQUATION
    Luis Lopez, Jose
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (06) : 2601 - 2617
  • [20] On the initial value problem for the hyperbolic Keller-Segel equations in Besov spaces
    Zhang, Lei
    Mu, Chunlai
    Zhou, Shouming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 334 : 451 - 489