UNCONDITIONALLY BOUND PRESERVING AND ENERGY DISSIPATIVE SCHEMES FOR A CLASS OF KELLER-SEGEL EQUATIONS

被引:33
|
作者
Shen, Jie [1 ]
Xu, Jie [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci AMSS, LSEC & NCMIS, Inst Computat Math & Sci Engn Comp ICMSEC, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Keller-Segel equations; chamotaxis; gradient flows; bound preserving; energy stability; POINT DYNAMICS; SINGULAR LIMIT; CHEMOTAXIS; MODEL;
D O I
10.1137/19M1246705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose numerical schemes for a class of Keller-Segel equations. The discretization is based on the gradient flow structure. The resulting first-order scheme is mass conservative, bound preserving, uniquely solvable, and energy dissipative, and the second-order scheme satisfies the first three properties. For parabolic-elliptic equations, the schemes are decoupled. Numerical examples are presented to show that besides the above properties, the schemes are efficient and able to capture the spiky solutions for the aggregation in chemotaxis.
引用
收藏
页码:1674 / 1695
页数:22
相关论文
共 50 条
  • [1] Fully decoupled and energy stable BDF schemes for a class of Keller-Segel equations
    Wang, Shufen
    Zhou, Simin
    Shi, Shuxun
    Chen, Wenbin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [2] Positivity-preserving and energy-dissipative finite difference schemes for the Fokker-Planck and Keller-Segel equations
    Hu, Jingwei
    Zhang, Xiangxiong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (03) : 1450 - 1484
  • [3] Bound-preserving finite element approximations of the Keller-Segel equations
    Badia, Santiago
    Bonilla, Jesus
    Gutierrez-Santacreu, Juan Vicente
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (03): : 609 - 642
  • [4] BOUND/POSITIVITY PRESERVING AND ENERGY STABLE SCALAR AUXILIARY VARIABLE SCHEMES FOR DISSIPATIVE SYSTEMS: APPLICATIONS TO KELLER-SEGEL AND POISSON-NERNST-PLANCK EQUATIONS
    Huang, Fukeng
    Shen, Jie
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03): : A1832 - A1857
  • [5] An Unconditionally Energy Stable and Positive Upwind DG Scheme for the Keller-Segel Model
    Acosta-Soba, Daniel
    Guillen-Gonzalez, Francisco
    Rodriguez-Galvan, J. Rafael
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (01)
  • [6] Optimal control of Keller-Segel equations
    Ryu, SU
    Yagi, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (01) : 45 - 66
  • [7] Unconditionally positivity preserving and energy dissipative schemes for Poisson–Nernst–Planck equations
    Jie Shen
    Jie Xu
    Numerische Mathematik, 2021, 148 : 671 - 697
  • [8] ASYMPTOTIC BEHAVIOR OF THE STOCHASTIC KELLER-SEGEL EQUATIONS
    Shang, Yadong
    Tian, Jianjun Paul
    Wang, Bixiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (03): : 1367 - 1391
  • [9] Energy Dissipative Local Discontinuous Galerkin Methods for Keller-Segel Chemotaxis Model
    Guo, Li
    Li, Xingjie Helen
    Yang, Yang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (03) : 1387 - 1404
  • [10] Unconditionally positivity preserving and energy dissipative schemes for Poisson-Nernst-Planck equations
    Shen, Jie
    Xu, Jie
    NUMERISCHE MATHEMATIK, 2021, 148 (03) : 671 - 697