A Khintchine-type theorem for hyperplanes

被引:21
作者
Ghosh, A [1 ]
机构
[1] Brandeis Univ, Waltham, MA 02454 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2005年 / 72卷
关键词
D O I
10.1112/S0024610705006587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The convergence case of a Khintchine-type theorem for a large class of hyperplanes is obtained. The approach to the problem is from a dynamical viewpoint, and a method due to Kleinbock and Margulis is modified to prove the result.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 12 条
  • [1] Beresnevich V., 2000, Vesci Akad. Navuk BSSR, V2, P14
  • [2] METRIC DIOPHANTINE APPROXIMATION: THE KHINTCHINE-GROSHEV THEOREM FOR NONDEGENERATE MANIFOLDS
    Beresnevich, V. V.
    Bernik, V. I.
    Kleinbock, D. Y.
    Margulis, G. A.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2002, 2 (02) : 203 - 225
  • [3] Bernik V, 2001, INT MATH RES NOTICES, V2001, P453
  • [4] BERNIK V, 1999, CAMBRIDGE TRACS MATH, V137
  • [5] Dickinson H, 2000, DUKE MATH J, V101, P271
  • [6] DODSON MM, 1992, J REINE ANGEW MATH, V432, P69
  • [7] DODSON MM, 1993, RUSS MATH SURV, V48, P23
  • [8] HARMAN G, 1998, LONDON MATH SOC MONO, P18
  • [9] Extremal subspaces and their submanifolds
    Kleinbock, D
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) : 437 - 466
  • [10] Kleinbock D., 2002, Handbook of dynamical systems, P813