COVID-19 Vaccine Distribution: Combining SEIR and Machine Learning

被引:0
作者
Lopez-Sandoval, Victor [1 ]
机构
[1] Univ Gerardo Barrios, Invest, San Miguel, El Salvador
关键词
SEIR; Machine Learning; Epidemic Model; Vaccination; COVID-19; El Salvador;
D O I
10.15359/ru.36-1.12
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this study is to build an epidemic model with vaccination control for Covid-19 in El Salvador. A combination of epidemiological SEIR (Susceptible, Exposed, Infectious or Recovered) models and the estimation of parameters using machine learning and contact networks is proposed. The project consisted of three phases: a) Analysis: the critical or key factors or variables of the phenomenon under study were identified, the model to be used, as well as its parameters and components, were defined, designed, and constructed b) Simulation: simulation made it possible to modify variables, implement alternatives, and modify the model itself without affecting the real system, which is highly useful for decision-making and preparing results and recommendations. The simulations were carried out using population data from El Salvador. c) Optimization: different scenarios were evaluated in which vaccination control measures and social distancing measures were applied, in order to identify the optimal strategy. As a result of this study, the best strategy for
引用
收藏
页数:19
相关论文
共 50 条
  • [21] COVID-19 Outbreak Prediction with Machine Learning
    Ardabili, Sina F.
    Mosavi, Amir
    Ghamisi, Pedram
    Ferdinand, Filip
    Varkonyi-Koczy, Annamaria R.
    Reuter, Uwe
    Rabczuk, Timon
    Atkinson, Peter M.
    ALGORITHMS, 2020, 13 (10)
  • [22] A Survey on Machine Learning in COVID-19 Diagnosis
    Guo, Xing
    Zhang, Yu-Dong
    Lu, Siyuan
    Lu, Zhihai
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (01): : 23 - 71
  • [23] Two Applications of Machine Learning on COVID-19
    Liu, Yeqian
    Tao, Xingyi
    Hu, Songjia
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [24] COVID-19 Cases Estimation in the UK using Improved SEIR Models
    Jiang, Shaogang
    Al-Ataby, Ali
    Al-Naima, Fawzi
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 469 - 474
  • [25] UNDERSTANDING COVID-19 THROUGH SEIR COMPARTMENT MODEL
    Kuntoro, Kuntoro
    JP JOURNAL OF BIOSTATISTICS, 2020, 17 (02) : 401 - 413
  • [26] The Role of Artificial Intelligence and Machine Learning Techniques: Race for COVID-19 Vaccine
    Kannan, Shantani
    Subbaram, Kannan
    Ali, Sheeza
    Kannan, Hemalatha
    ARCHIVES OF CLINICAL INFECTIOUS DISEASES, 2020, 15 (02):
  • [27] Predictors of COVID-19 vaccination rate in USA: A machine learning approach
    Osman, Syed Muhammad Ishraque
    Sabit, Ahmed
    MACHINE LEARNING WITH APPLICATIONS, 2022, 10
  • [28] COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach
    Pinter, Gergo
    Felde, Imre
    Mosavi, Amir
    Ghamisi, Pedram
    Gloaguen, Richard
    MATHEMATICS, 2020, 8 (06)
  • [29] COVID-19 Spreading Prediction with Enhanced SEIR Model
    Ma, Yixiao
    Xu, Zixuan
    Wu, Ziwei
    Bai, Yong
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), 2020, : 383 - 386
  • [30] COVID-19 Data Analysis and Appropriate Vaccine Prediction using Machine Learning
    Ullah, Md. Oli
    Nobel, S. M. Nuruzzaman
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 496 - 504