Projection and proximal point methods:: convergence results and counterexamples

被引:214
作者
Bauschke, HH
Matousková, E
Reich, S [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Acad Sci Czech Republ, Inst Math, CZ-11567 Prague, Czech Republic
基金
加拿大自然科学与工程研究理事会; 以色列科学基金会;
关键词
alternating projections; averaged projections; Hilbert space; nonexpansive; proximal point algorithm; weak convergence;
D O I
10.1016/j.na.2003.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Hundal has constructed a hyperplane H, a cone K, and a starting point y(0) in l(2) such that the sequence of alternating projections ((PKPH)(n)y(0))nepsilonN converges weakly to some point in H boolean AND K, but not in norm. We show how this construction results in a counterexample to norm convergence for iterates of averaged projections; hence, we give an affirmative answer to a question raised by Reich two decades ago. Furthermore, new counterexamples to norm convergence for iterates of firmly nonexpansive maps (a la Genel and Lindenstrauss) and for the proximal point algorithm (a la Guler) are provided. We also present a counterexample, along with some weak and norm convergence results, for the new framework of string-averaging projection methods introduced by Censor et at. Extensions to Banach spaces and the situation for the Hilbert ball are discussed as well. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:715 / 738
页数:24
相关论文
共 55 条
  • [1] [Anonymous], 1993, DYNAM SYSTEMS APPL
  • [2] [Anonymous], 2000, GEOMETRIC NONLINEAR
  • [3] Attouch H., 1986, N HOLLAND MATH LIB, V34, P125
  • [4] AUSLENDER A, 1969, THESIS FACULTE SCI G
  • [5] Baillon J. B., 1978, Houston Journal of Mathematics, V4, P1
  • [6] Bauschke H.H., 1997, CONT MATH, V204, P1
  • [7] Bauschke H. H., 1996, THESIS
  • [8] Accelerating the convergence of the method of alternating projections
    Bauschke, HH
    Deutsch, F
    Hundal, H
    Park, SH
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (09) : 3433 - 3461
  • [9] DYKSTRA ALTERNATING PROJECTION ALGORITHM FOR 2 SETS
    BAUSCHKE, HH
    BORWEIN, JM
    [J]. JOURNAL OF APPROXIMATION THEORY, 1994, 79 (03) : 418 - 443
  • [10] A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces
    Bauschke, HH
    Combettes, PL
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) : 248 - 264