Interdependence Model for Multi-label Classification

被引:1
作者
Yoshimura, Kosuke [1 ]
Iwase, Tomoaki [2 ]
Baba, Yukino [3 ]
Kashima, Hisashi [4 ,5 ]
机构
[1] Sansan Inc, Tokyo, Japan
[2] Yahoo Japan Corp, Tokyo, Japan
[3] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[4] Kyoto Univ, Kyoto, Japan
[5] RIKEN, Ctr AIP, Tokyo, Japan
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV | 2019年 / 11730卷
关键词
Multi-label classification; Supervised learning; Interdependence model;
D O I
10.1007/978-3-030-30490-4_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The multi-label classification problem is a supervised learning problem that aims to predict multiple labels for each data instance. One of the key issues in designing multi-label learning approaches is how to incorporate dependencies among different labels. In this study, we propose a new approach called the interdependence model, which consists of a set of single-label predictors each of which predicts a particular label using the other labels. The proposed model can directly consider label interdependencies by reusing arbitrary conventional probabilistic models for single-label classification. We consider three prediction methods and one accelerated method for making predictions with the interdependence model. Experiments show the superior prediction performance of the proposed methods in several evaluation metrics, especially when there is a large number of candidate labels or when labels are partially given in the test phase.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 21 条
[1]  
Balasubramanian Krishnakumar, 2012, P 29 INT C INT C MAC, P283
[2]  
Bhatia Kush, 2015, Advances in Neural Information Processing Systems, V28
[3]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[4]   THE 9TH ANNUAL MLSP COMPETITION: NEW METHODS FOR ACOUSTIC CLASSIFICATION OF MULTIPLE SIMULTANEOUS BIRD SPECIES IN A NOISY ENVIRONMENT [J].
Briggs, Forrest ;
Huang, Yonghong ;
Raich, Raviv ;
Eftaxias, Konstantinos ;
Lei, Zhong ;
Cukierski, William ;
Hadley, Sarah Frey ;
Hadley, Adam ;
Betts, Matthew ;
Fern, Xiaoli Z. ;
Irvine, Jed ;
Neal, Lawrence ;
Thomas, Anil ;
Fodor, Gabor ;
Tsoumakas, Grigorios ;
Ng, Hong Wei ;
Thi Ngoc Tho Nguyen ;
Huttunen, Heikki ;
Ruusuvuori, Pekka ;
Manninen, Tapio ;
Diment, Aleksandr ;
Virtanen, Tuomas ;
Marzat, Julien ;
Defretin, Joseph ;
Callender, Dave ;
Hurlburt, Chris ;
Larrey, Ken ;
Milakov, Maxim .
2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
[5]  
Elisseeff A, 2002, ADV NEUR IN, V14, P681
[6]  
Godbole S, 2004, LECT NOTES ARTIF INT, V3056, P22
[7]   A Genetic Algorithm for Optimizing the Label Ordering in Multi-Label Classifier Chains [J].
Goncalves, Eduardo Correa ;
Plastino, Alexandre ;
Freitas, Alex A. .
2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, :469-476
[8]  
Hsu D., 2009, NIPS, V22, P772
[9]  
Klimt B, 2004, LECT NOTES COMPUT SC, V3201, P217
[10]  
Pestian J., 2007, P BIOL TRANSL CLIN L, P97