Ribozymes targeting serine/threonine kinase Akt1 sensitize cells to anticancer drugs

被引:10
作者
Yanagihara, M
Katano, M
Takahashi-Sasaki, N
Kimata, K
Taira, K
Andoh, T
机构
[1] Soka Univ, Fac Engn, Dept Bioinformat, Hachioji, Tokyo 1928577, Japan
[2] Univ Tokyo, Sch Engn, Dept Chem & Biotechnol, Tokyo 1138656, Japan
关键词
D O I
10.1111/j.1349-7006.2005.00088.x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The serine/threonine kinase Akt is a key component of the cellular signaling pathway for survival and drug-resistance in cancer cells. In the present study we confirmed this view by expressing an antagonist of Akt, a dominant negative form of Akt, in HCT116 colon carcinoma cells and observing apoptosis induction in cells in which expression of the mutant protein had been induced. Three isoforms of Akt have been found: Akt1/PKB alpha, Akt2/PKB beta and Akt3/PKB gamma. However, the function of individual isoforms with respect to tumorigenicity and drug-resistance of cancer cells is largely unknown. We designed ribozymes targeting the Akt1 protein in mammalian cells. Our data indicate that Akt1 ribozymes downregulate Akt1 expression to less than half that of control cells. Downregulation of Akt1 expression appears to sensitize HEK293 and HeLa cells to typical chemotherapeutic agents. However, Akt1 ribozymes had little effect on the proliferative activity of the cells. Thus, Akt as a whole and even just the Akt1 isozyme is an excellent target for chemotherapy. We further suggest a synergistic effect for combination therapy targeting Akt and other vital molecules such as tubulins, topoisomerases and protein kinases.
引用
收藏
页码:620 / 626
页数:7
相关论文
共 39 条
[1]  
ALLEY MC, 1988, CANCER RES, V48, P589
[2]  
BELLACOSA A, 1993, ONCOGENE, V8, P745
[3]   A RETROVIRAL ONCOGENE, AKT, ENCODING A SERINE-THREONINE KINASE CONTAINING AN SH2-LIKE REGION [J].
BELLACOSA, A ;
TESTA, JR ;
STAAL, SP ;
TSICHLIS, PN .
SCIENCE, 1991, 254 (5029) :274-277
[4]   Advances in protein kinase B signalling:: AKTion on multiple fronts [J].
Brazil, DP ;
Yang, ZZ ;
Hemmings, BA .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (05) :233-242
[5]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[6]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[7]  
CHEN CA, 1988, BIOTECHNIQUES, V6, P632
[8]   Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene [J].
Chen, WS ;
Xu, PZ ;
Gottlob, K ;
Chen, ML ;
Sokol, K ;
Shiyanova, T ;
Roninson, I ;
Weng, W ;
Suzuki, R ;
Tobe, K ;
Kadowaki, T ;
Hay, N .
GENES & DEVELOPMENT, 2001, 15 (17) :2203-2208
[9]   AKT2, A PUTATIVE ONCOGENE ENCODING A MEMBER OF A SUBFAMILY OF PROTEIN-SERINE THREONINE KINASES, IS AMPLIFIED IN HUMAN OVARIAN CARCINOMAS [J].
CHENG, JQ ;
GODWIN, AK ;
BELLACOSA, A ;
TAGUCHI, T ;
FRANKE, TF ;
HAMILTON, TC ;
TSICHLIS, PN ;
TESTA, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (19) :9267-9271
[10]   Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice [J].
Cho, H ;
Thorvaldsen, JL ;
Chu, QW ;
Feng, F ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :38349-38352