Adaptive Harris hawks optimization with persistent trigonometric differences for photovoltaic model parameter extraction

被引:58
作者
Song, Shiming [1 ]
Wang, Pengjun [2 ]
Heidari, Ali Asghar [3 ]
Zhao, Xuehua [4 ]
Chen, Huiling [1 ]
机构
[1] Wenzhou Univ, Coll Comp Sci & Artificial Intelligence, Wenzhou 325035, Zhejiang, Peoples R China
[2] Wenzhou Univ, Coll Elect & Elect Engn, Wenzhou 325035, Peoples R China
[3] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran 1417466191, Iran
[4] Shenzhen Inst Informat Technol, Sch Digital Media, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter extraction; Harris hawks optimization; Persistent trigonometric differences; PV cells; Photovoltaic; DOUBLE-DIODE MODEL; EXTREMAL OPTIMIZATION; GLOBAL OPTIMIZATION; EFFICIENT ALGORITHM; EVOLUTION ALGORITHM; SINGLE-DIODE; PV SYSTEM; SEARCH; IDENTIFICATION; PARALLEL;
D O I
10.1016/j.engappai.2021.104608
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an adaptive Harris hawk optimization with persistent trigonometric (sine-cosine)-differences (ADHHO) is proposed for parameter identification of Photovoltaic (PV) systems. In the optimized version of HHO, we innovatively propose the persistent-trigonometric-differences mechanism for improving the global search capability of HHO; moreover, we improve the energy factor in the original algorithm so that ADHHO obtains a better balance between exploration and exploitation. Note that the proposed method can obtain lower CPU time in parameter extraction for the three-diode and PV module models with an enhanced parameter extraction performance. To validate the performance of ADHHO, we verified the parameter extraction capability of the single-diode model (SDM), double-diode model (DDM), triple-diode model (TDM), and PV module model (PVM), respectively. Further, we verified the parameter extraction effect of ADHHO in three commercial cells with different light intensity and temperature conditions. Experiments show that the method proposed in this paper can reasonably simulate the output performance of solar PV cells and can be used as a trustworthy method for the extraction of unknown parameters of solar PV systems.
引用
收藏
页数:24
相关论文
共 153 条
  • [21] Coyote optimization algorithm for the parameter extraction of photovoltaic cells
    Chin, Vun Jack
    Salam, Zainal
    [J]. SOLAR ENERGY, 2019, 194 : 656 - 670
  • [22] An Accurate and Fast Computational Algorithm for the Two-diode Model of PV Module Based on a Hybrid Method
    Chin, Vun Jack
    Salam, Zainal
    Ishaque, Kashif
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (08) : 6212 - 6222
  • [23] Parameter extraction for dynamic PV thermal model using particle swarm optimisation
    Chopde, Abhay
    Magare, Dhiraj
    Patil, Mahesh
    Gupta, Rajesh
    Sastry, O. S.
    [J]. APPLIED THERMAL ENGINEERING, 2016, 100 : 508 - 517
  • [24] FBI inspired meta-optimization
    Chou, Jui-Sheng
    Nguyen, Ngoc-Mai
    [J]. APPLIED SOFT COMPUTING, 2020, 93
  • [25] Logarithmic similarity measure of dynamic neutrosophic cubic sets and its application in medical diagnosis
    Cui, Wen-Hua
    Ye, Jun
    [J]. COMPUTERS IN INDUSTRY, 2019, 111 : 198 - 206
  • [26] Deng W., 2020, IEEE T INTELL TRANSP, V3, P1, DOI DOI 10.1109/TITS.2020.3025796
  • [27] An Improved Quantum-Inspired Differential Evolution Algorithm for Deep Belief Network
    Deng, Wu
    Liu, Hailong
    Xu, Junjie
    Zhao, Huimin
    Song, Yingjie
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (10) : 7319 - 7327
  • [28] An effective improved co-evolution ant colony optimisation algorithm with multi-strategies and its application
    Deng, Wu
    Xu, Junjie
    Song, Yingjie
    Zhao, Huimin
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2020, 16 (03) : 158 - 170
  • [29] Easwarakhanthan T., 1986, International Journal of Solar Energy, V4, P1, DOI 10.1080/01425918608909835
  • [30] Implementation of self-adaptive Harris Hawks Optimization-based energy management scheme of fuel cell-based electric power system
    Ebrahim, M. A.
    Talat, Besanti
    Saied, E. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (29) : 15268 - 15287