Biosensing with Forster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes

被引:26
作者
Ding, Shaowei [1 ]
Cargill, Allison A. [1 ]
Das, Suprem R. [1 ]
Medintz, Igor L. [2 ]
Claussen, Jonathan C. [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, 2104 Black Engn, Ames, IA 50011 USA
[2] US Naval Res Lab, Ctr Bio Mol Sci & Engn Code 6900, Washington, DC 20375 USA
关键词
Forster Resonance Energy Transfer (FRET); graphene; carbon nanotubes; carbon dots; carbon nanoparticles; biosensor; WALLED CARBON NANOTUBES; INDIVIDUAL QUANTUM-DOT; PLATINUM NANOPARTICLES; MOLECULAR BEACONS; LASER-ABLATION; STRANDED-DNA; IN-VITRO; FLUORESCENCE; GRAPHENE; CELLS;
D O I
10.3390/s150614766
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nanocarbon allotropes (NCAs), including zero-dimensional carbon dots (CDs), one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene, exhibit exceptional material properties, such as unique electrical/thermal conductivity, biocompatibility and high quenching efficiency, that make them well suited for both electrical/electrochemical and optical sensors/biosensors alike. In particular, these material properties have been exploited to significantly enhance the transduction of biorecognition events in fluorescence-based biosensing involving Forster resonant energy transfer (FRET). This review analyzes current advances in sensors and biosensors that utilize graphene, CNTs or CDs as the platform in optical sensors and biosensors. Widely utilized synthesis/fabrication techniques, intrinsic material properties and current research examples of such nanocarbon, FRET-based sensors/biosensors are illustrated. The future outlook and challenges for the research field are also detailed.
引用
收藏
页码:14766 / 14787
页数:22
相关论文
共 50 条
  • [41] Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Forster resonance energy transfer
    Schmitt, F. -J.
    Maksimov, E. G.
    Haetti, P.
    Weissenborn, J.
    Jeyasangar, V.
    Razjivin, A. P.
    Paschenko, V. Z.
    Friedrich, T.
    Renger, G.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2012, 1817 (08): : 1461 - 1470
  • [42] Forster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor
    Owen, Timothy S.
    Ngoje, George
    Lageman, Travis J.
    Bordeau, Brandon M.
    Belfort, Marlene
    Callahan, Brian P.
    ANALYTICAL BIOCHEMISTRY, 2015, 488 : 1 - 5
  • [43] Band Nesting Bypass in WS2 Monolayers via Forster Resonance Energy Transfer
    Yan, Zhiyuan
    Poh, Eng Tuan
    Zhang, Zheng
    Chua, Sing Teng
    Wang, Xinyun
    Wu, Xiao
    Chen, Zhihui
    Yang, Jing
    Xu, Qing-Hua
    Goh, Kuan Eng Johnson
    Zhao, Rong
    Sow, Chorng-Haur
    ACS NANO, 2020, 14 (05) : 5946 - 5955
  • [44] Research Techniques Made Simple: Methodology and Applications of Forster Resonance Energy Transfer (FRET) Microscopy
    Broussard, Joshua A.
    Green, Kathleen J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2017, 137 (11) : E185 - E191
  • [45] Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: application to endocytosis study and RNA detection
    Zhang, Yinan
    Wei, Guoke
    Yu, Jun
    Birch, David J. S.
    Chen, Yu
    FARADAY DISCUSSIONS, 2015, 178 : 383 - 394
  • [46] Fluorescence immunoassay of octachlorostyrene based on Forster resonance energy transfer between CdTe quantum dots and rhodamine B
    Wang, Xin
    Sheng, Pengtao
    Zhou, Liping
    Tong, Xi
    Shi, Lei
    Cai, Qingyun
    BIOSENSORS & BIOELECTRONICS, 2014, 60 : 52 - 56
  • [47] Forster Resonance Energy Transfer between Colloidal CuInS2/ZnS Quantum Dots and Dark Quenchers
    Xia, Chenghui
    Wang, Wentao
    Du, Liang
    Rabouw, Freddy T.
    van den Heuvel, Dave J.
    Gerritsen, Hans C.
    Mattoussi, Hedi
    Donega, Celso de Mello
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (02) : 1717 - 1731
  • [48] White light generation using Forster resonance energy transfer between 3-hydroxyisoquinoline and Nile Red
    Joshi, Neeraj K.
    Polgar, Alexander M.
    Steer, Ronald P.
    Paige, Matthew F.
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2016, 15 (05) : 609 - 617
  • [49] Forster's resonance energy transfer between Fullerene C60 and Coumarin C440
    Qaiser, Darakhshan
    Khan, Mohd. Shahid
    Singh, R. D.
    Khan, Zahid H.
    Chawla, Santa
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2010, 77 (05) : 1065 - 1068
  • [50] Microwave analogy of Forster resonance energy transfer and effect of finite antenna length
    Lezhennikova, Kseniia
    Rustomji, Kaizad
    Jomin, Pierre
    Glybovski, Stanislav
    de Sterke, C. Martijn
    Wenger, Jerome
    Abdeddaim, Redha
    Enoch, Stefan
    SCIENTIFIC REPORTS, 2024, 14 (01):