LP extension of holomorphic functions from submanifolds to strictly pseudoconvex domains with non-smooth boundary

被引:0
作者
Adachi, K [1 ]
机构
[1] Nagasaki Univ, Dept Math, Nagasaki 8528521, Japan
关键词
D O I
10.1017/S0027763000008655
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a bounded strictly pseudoconvex domain in C-n (with not necessarily smooth boundary) and let X be a submanifold in a neighborhood of (D) over bar. Then any L-p (1 less than or equal to p less than or equal to infinity) holomorphic function in X boolean AND D can be extended to an LP holomorphic function in D.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 50 条
[41]   Non- isotropic weighted L p estimates for the θ- equation on piecewise smooth strictly pseudoconvex domains [J].
Ahn, Heungju ;
Cho, Hong Rae ;
Park, Jong-Do .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (12) :2161-2171
[42]   Homogenization of Elliptic Problems with Neumann Boundary Conditions in Non-smooth Domains [J].
Jun GENG .
Acta Mathematica Sinica, 2018, 34 (04) :612-628
[43]   Homogenization of Elliptic Problems with Neumann Boundary Conditions in Non-smooth Domains [J].
Geng, Jun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (04) :612-628
[45]   Boundary element methods for Maxwell's equations on non-smooth domains [J].
Buffa, A ;
Costabel, M ;
Schwab, C .
NUMERISCHE MATHEMATIK, 2002, 92 (04) :679-710
[46]   Continuation of bounded holomorphic functions from one-codimensional subspace to pseudoconvex domains [J].
Tsuji, M .
PROCEEDINGS OF THE SIXTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, 1996, :313-320
[47]   Homogenization of Elliptic Problems with Neumann Boundary Conditions in Non-smooth Domains [J].
Jun GENG .
Acta Mathematica Sinica,English Series, 2018, (04) :612-628
[48]   Boundary element methods for Maxwell's equations on non-smooth domains [J].
A. Buffa ;
M. Costabel ;
C. Schwab .
Numerische Mathematik, 2002, 92 :679-710
[49]   Homogenization of Elliptic Problems with Neumann Boundary Conditions in Non-smooth Domains [J].
Jun Geng .
Acta Mathematica Sinica, English Series, 2018, 34 :612-628
[50]   Hölder continuous solutions to the complex Monge–Ampère equations in non-smooth pseudoconvex domains [J].
Nguyen Xuan Hong ;
Tran Van Thuy .
Analysis and Mathematical Physics, 2018, 8 :465-484