Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings

被引:53
作者
Beaudoin, Felix [1 ]
Lachance-Quirion, Dany [2 ,3 ]
Coish, W. A. [1 ,4 ]
Pioro-Ladriere, Michel [2 ,3 ,4 ]
机构
[1] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada
[2] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ J1K 2R1, Canada
[4] Canadian Inst Adv Res, Quantum Informat Sci Program, Toronto, ON M5G 1Z8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
spin qubits; charge noise; circuit quantum electrodynamics; CIRCUIT QUANTUM ELECTRODYNAMICS; SYSTEMS; QUBIT; DOTS;
D O I
10.1088/0957-4484/27/46/464003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microwave-frequency superconducting resonators are ideally suited to perform dispersive qubit readout, to mediate two-qubit gates, and to shuttle states between distant quantum systems. A prerequisite for these applications is a strong qubit-resonator coupling. Strong coupling between an electron-spin qubit and a microwave resonator can be achieved by correlating spin-and orbital degrees of freedom. This correlation can be achieved through the Zeeman coupling of a single electron in a double quantum dot to a spatially inhomogeneous magnetic field generated by a nearby nanomagnet. In this paper, we consider such a device and estimate spin-resonator couplings of order similar to 1. MHz with realistic parameters. Further, through realistic simulations, we show that precise placement of the double-dot relative to the nanomagnet allows to select between a purely longitudinal coupling (commuting with the bare spin Hamiltonian) and a purely transverse (spin non-conserving) coupling. Additionally, we suggest methods to mitigate dephasing and relaxation channels that are introduced in this coupling scheme. This analysis gives a clear route toward the realization of coherent state transfer between a microwave resonator and a single electron spin in a GaAs double quantum dot with a fidelity above 90%. Improved dynamical decoupling sequences, low-noise environments, and longer-lived microwave cavity modes may lead to substantially higher fidelities in the near future.
引用
收藏
页数:11
相关论文
共 76 条
[1]   Cavity QED with Magnetically Coupled Collective Spin States [J].
Amsuess, R. ;
Koller, Ch. ;
Noebauer, T. ;
Putz, S. ;
Rotter, S. ;
Sandner, K. ;
Schneider, S. ;
Schramboeck, M. ;
Steinhauser, G. ;
Ritsch, H. ;
Schmiedmayer, J. ;
Majer, J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (06)
[2]  
[Anonymous], 2000, Quantum Noise
[3]  
Baart TA, 2016, NAT NANOTECHNOL, V11, P330, DOI [10.1038/NNANO.2015.291, 10.1038/nnano.2015.291]
[4]   Reduced frequency noise in superconducting resonators [J].
Barends, R. ;
Vercruyssen, N. ;
Endo, A. ;
de Visser, P. J. ;
Zijlstra, T. ;
Klapwijk, T. M. ;
Baselmans, J. J. A. .
APPLIED PHYSICS LETTERS, 2010, 97 (03)
[5]   Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture [J].
Basset, J. ;
Stockklauser, A. ;
Jarausch, D. -D. ;
Frey, T. ;
Reichl, C. ;
Wegscheider, W. ;
Wallraff, A. ;
Ensslin, K. ;
Ihn, T. .
APPLIED PHYSICS LETTERS, 2014, 105 (06)
[6]   Single-electron double quantum dot dipole-coupled to a single photonic mode [J].
Basset, J. ;
Jarausch, D-D. ;
Stockklauser, A. ;
Frey, T. ;
Reichl, C. ;
Wegscheider, W. ;
Ihn, T. M. ;
Ensslin, K. ;
Wallraff, A. .
PHYSICAL REVIEW B, 2013, 88 (12)
[7]  
Beaudoin F, 2016, ARXIV160205090
[8]   Microscopic models for charge-noise-induced dephasing of solid-state qubits [J].
Beaudoin, Felix ;
Coish, W. A. .
PHYSICAL REVIEW B, 2015, 91 (16)
[9]   Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits [J].
Billangeon, P. -M. ;
Tsai, J. S. ;
Nakamura, Y. .
PHYSICAL REVIEW B, 2015, 91 (09)
[10]   nextnano: General purpose 3-D simulations [J].
Birner, Stefan ;
Zibold, Tobias ;
Andlauer, Till ;
Kubis, Tillmann ;
Sabathil, Matthias ;
Trellakis, Alex ;
Vogl, Peter .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2137-2142