Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings

被引:48
作者
Beaudoin, Felix [1 ]
Lachance-Quirion, Dany [2 ,3 ]
Coish, W. A. [1 ,4 ]
Pioro-Ladriere, Michel [2 ,3 ,4 ]
机构
[1] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada
[2] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ J1K 2R1, Canada
[4] Canadian Inst Adv Res, Quantum Informat Sci Program, Toronto, ON M5G 1Z8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
spin qubits; charge noise; circuit quantum electrodynamics; CIRCUIT QUANTUM ELECTRODYNAMICS; SYSTEMS; QUBIT; DOTS;
D O I
10.1088/0957-4484/27/46/464003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microwave-frequency superconducting resonators are ideally suited to perform dispersive qubit readout, to mediate two-qubit gates, and to shuttle states between distant quantum systems. A prerequisite for these applications is a strong qubit-resonator coupling. Strong coupling between an electron-spin qubit and a microwave resonator can be achieved by correlating spin-and orbital degrees of freedom. This correlation can be achieved through the Zeeman coupling of a single electron in a double quantum dot to a spatially inhomogeneous magnetic field generated by a nearby nanomagnet. In this paper, we consider such a device and estimate spin-resonator couplings of order similar to 1. MHz with realistic parameters. Further, through realistic simulations, we show that precise placement of the double-dot relative to the nanomagnet allows to select between a purely longitudinal coupling (commuting with the bare spin Hamiltonian) and a purely transverse (spin non-conserving) coupling. Additionally, we suggest methods to mitigate dephasing and relaxation channels that are introduced in this coupling scheme. This analysis gives a clear route toward the realization of coherent state transfer between a microwave resonator and a single electron spin in a GaAs double quantum dot with a fidelity above 90%. Improved dynamical decoupling sequences, low-noise environments, and longer-lived microwave cavity modes may lead to substantially higher fidelities in the near future.
引用
收藏
页数:11
相关论文
共 76 条
  • [1] Cavity QED with Magnetically Coupled Collective Spin States
    Amsuess, R.
    Koller, Ch.
    Noebauer, T.
    Putz, S.
    Rotter, S.
    Sandner, K.
    Schneider, S.
    Schramboeck, M.
    Steinhauser, G.
    Ritsch, H.
    Schmiedmayer, J.
    Majer, J.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (06)
  • [2] [Anonymous], 2000, Quantum Noise
  • [3] Baart TA, 2016, NAT NANOTECHNOL, V11, P330, DOI [10.1038/NNANO.2015.291, 10.1038/nnano.2015.291]
  • [4] Reduced frequency noise in superconducting resonators
    Barends, R.
    Vercruyssen, N.
    Endo, A.
    de Visser, P. J.
    Zijlstra, T.
    Klapwijk, T. M.
    Baselmans, J. J. A.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (03)
  • [5] Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture
    Basset, J.
    Stockklauser, A.
    Jarausch, D. -D.
    Frey, T.
    Reichl, C.
    Wegscheider, W.
    Wallraff, A.
    Ensslin, K.
    Ihn, T.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (06)
  • [6] Single-electron double quantum dot dipole-coupled to a single photonic mode
    Basset, J.
    Jarausch, D-D.
    Stockklauser, A.
    Frey, T.
    Reichl, C.
    Wegscheider, W.
    Ihn, T. M.
    Ensslin, K.
    Wallraff, A.
    [J]. PHYSICAL REVIEW B, 2013, 88 (12)
  • [7] Beaudoin F, 2016, ARXIV160205090
  • [8] Microscopic models for charge-noise-induced dephasing of solid-state qubits
    Beaudoin, Felix
    Coish, W. A.
    [J]. PHYSICAL REVIEW B, 2015, 91 (16)
  • [9] Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits
    Billangeon, P. -M.
    Tsai, J. S.
    Nakamura, Y.
    [J]. PHYSICAL REVIEW B, 2015, 91 (09)
  • [10] nextnano: General purpose 3-D simulations
    Birner, Stefan
    Zibold, Tobias
    Andlauer, Till
    Kubis, Tillmann
    Sabathil, Matthias
    Trellakis, Alex
    Vogl, Peter
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) : 2137 - 2142